Inverse response of 231Pa/230Th to variations of the Atlantic meridional overturning circulation in the North Atlantic intermediate water

[1]  D. Faust,et al.  Heinrich Events , 2021, Quaternary Research.

[2]  T. Goepfert,et al.  Constraints on the Northwestern Atlantic Deep Water Circulation From 231Pa/230Th During the Last 30,000 Years , 2019, Paleoceanography and Paleoclimatology.

[3]  J. McManus,et al.  Evidence for Stable Holocene Basin‐Scale Overturning Circulation Despite Variable Currents Along the Deep Western Boundary of the North Atlantic Ocean , 2018, Geophysical Research Letters.

[4]  M. Ting,et al.  An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China , 2018, Geophysical Research Letters.

[5]  D. Faranda,et al.  Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr , 2018, Climate of the Past.

[6]  Tianyu Chen,et al.  Coherent deglacial changes in western Atlantic Ocean circulation , 2018, Nature Communications.

[7]  Xiaopeng Li,et al.  Supramolecular Kandinsky circles with high antibacterial activity , 2018, Nature Communications.

[8]  J. Andrews,et al.  “Heinrich events” (& sediments): A history of terminology and recommendations for future usage , 2018 .

[9]  C. Waelbroeck,et al.  Downcore Variations of Sedimentary Detrital (238U/232Th) Ratio: Implications on the Use of 230Thxs and 231Paxs to Reconstruct Sediment Flux and Ocean Circulation , 2018, Geochemistry, Geophysics, Geosystems.

[10]  E. Michel,et al.  Radiocarbon Measurements of Small-Size Foraminiferal Samples with the Mini Carbon Dating System (MICADAS) at the University of Bern: Implications for Paleoclimate Reconstructions , 2018, Radiocarbon.

[11]  S. Happel,et al.  Improved Separation of Pa from Th and U in Marine Sediments with TK400 Resin. , 2018, Analytical chemistry.

[12]  Matthieu Roy-Barman,et al.  A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with realistic particle dynamics (ProThorP 0.1) , 2017, Geoscientific Model Development.

[13]  Zhengyu Liu,et al.  231 Pa and 230 Th in the ocean model of the Community Earth System Model (CESM1.3) , 2017 .

[14]  Yancheng Zhang,et al.  Variability in mid‐depth ventilation of the western Atlantic Ocean during the last deglaciation , 2017 .

[15]  F. Joos,et al.  New insights into cycling of 231Pa and 230Th in the Atlantic Ocean , 2017 .

[16]  K. Rehfeld,et al.  Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation , 2017 .

[17]  R. Kerr,et al.  Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean , 2017 .

[18]  J. Einsle,et al.  Anatomy of Heinrich Layer 1 and its role in the last deglaciation , 2017 .

[19]  J. Lynch‐Stieglitz The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. , 2017, Annual review of marine science.

[20]  R. Schiebel,et al.  Planktic Foraminifers in the Modern Ocean , 2017 .

[21]  F. Joos,et al.  Earth and Planetary Science Letters New insights into cycling of 231 Pa and 230 Th in the Atlantic Ocean ✩ , 2017 .

[22]  V. Strass,et al.  Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap , 2016 .

[23]  C. Waelbroeck,et al.  Changes in the geometry and strength of the Atlantic Meridional Overturning Circulation during the last glacial (20-50 ka) , 2016 .

[24]  J. McManus,et al.  North Atlantic ocean circulation and abrupt climate change during the last glaciation , 2016, Science.

[25]  S. Jaccard,et al.  Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation , 2016 .

[26]  S. B. Moran,et al.  230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes , 2015 .

[27]  J. Fohlmeister,et al.  Strong and deep Atlantic meridional overturning circulation during the last glacial cycle , 2014, Nature.

[28]  J. McManus,et al.  231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1 , 2014, Nature Communications.

[29]  I. N. McCave,et al.  Advection and scavenging controls of Pa/Th in the northern NE Atlantic , 2014 .

[30]  H. Synal,et al.  14C Analysis and Sample Preparation at the New Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA) , 2014, Radiocarbon.

[31]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[32]  H. Schulz,et al.  Strength and geometry of the glacial Atlantic Meridional Overturning Circulation , 2012 .

[33]  D. Heslop,et al.  Boundary scavenging at the East Atlantic margin does not negate use of 231Pa/230Th to trace Atlantic overturning , 2012 .

[34]  G. Mollenhauer,et al.  Fractionation of Th-230 , Pa-231 , and Be-10 induced by particle size and composition within an opal-rich sediment of the Atlantic Southern Ocean , 2011 .

[35]  Yiming Luo,et al.  Testing the 231Pa/230Th paleocirculation proxy: A data versus 2D model comparison , 2011 .

[36]  O. A. van der Velde,et al.  Lightning development associated with two negative gigantic jets , 2011 .

[37]  G. Mollenhauer,et al.  Grain size effects on Th-230(xs) inventories in opal-rich and carbonate-rich marine sediments , 2010 .

[38]  H. Synal,et al.  231Pa/230Th: A proxy for upwelling off the coast of West Africa , 2010 .

[39]  Mehran,et al.  for radiocarbon measurements , 2010 .

[40]  Yiming Luo,et al.  Sediment 231 Pa/ 230 Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model , 2009 .

[41]  Jerry F. McManus,et al.  Glacial‐interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region , 2009 .

[42]  A. Deletic,et al.  A possible mechanism for soil moisture bimodality in humid‐land environments , 2009 .

[43]  A. Rosell‐Melé,et al.  Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma , 2009 .

[44]  M. Kučera,et al.  Seasonal and interannual variability of the planktic foraminiferal flux in the vicinity of the Azores Current , 2009 .

[45]  A. Mangini,et al.  Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? , 2009 .

[46]  D. Hodell,et al.  Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼640 ka)? , 2008 .

[47]  P. Povinec,et al.  A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385). , 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[48]  E. Martin,et al.  Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes , 2008 .

[49]  E. Boyle,et al.  Mixed-Layer Deepening During Heinrich Events: A Multi-Planktonic Foraminiferal δ18O Approach , 2007, Science.

[50]  G. Bigg,et al.  Ocean circulation at the Last Glacial Maximum: A combined modeling and magnetic proxy‐based study , 2007 .

[51]  F. Joos,et al.  Modeling the relationship between 231Pa/230Th distribution in North Atlantic sediment and Atlantic meridional overturning circulation , 2007 .

[52]  T. Stocker,et al.  Marine Isotope Stage (MIS) 8 millennial variability stratigraphically identical to MIS 3 , 2007 .

[53]  Michal Kucera,et al.  Chapter Six Planktonic Foraminifera as Tracers of Past Oceanic Environments , 2007 .

[54]  Isabelle Billy,et al.  Contrasting conditions preceding MIS3 and MIS2 Heinrich events , 2006 .

[55]  S. B. Moran,et al.  Accelerated drawdown of meridional overturning in the late‐glacial Atlantic triggered by transient pre‐H event freshwater perturbation , 2006 .

[56]  Frank Paul,et al.  Alpine glaciers to disappear within decades? , 2006 .

[57]  E. Cortijo,et al.  Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation , 2005 .

[58]  Gregor E. Morfill,et al.  Dusty plasma effects in Saturn's magnetosphere , 2004 .

[59]  D. Roche,et al.  Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling , 2004, Nature.

[60]  T. Elliott,et al.  Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. , 2004, Analytical chemistry.

[61]  J. McManus,et al.  Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes , 2004, Nature.

[62]  R. Usbeck,et al.  Adsorption of thorium and protactinium onto different particle types: experimental findings , 2004 .

[63]  R. Anderson,et al.  Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean” by S. Luo and T.-L. Ku , 2004 .

[64]  M. Frank,et al.  230Th-normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[65]  S. Hemming,et al.  Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint , 2004 .

[66]  M. Frank,et al.  230 Th normalization : An essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[67]  G. Henderson,et al.  The U-series Toolbox for Paleoceanography , 2003 .

[68]  P. Kubik,et al.  The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean , 2002 .

[69]  M. Fleisher,et al.  Scavenging of 230 Th, 231 Pa and 10 Be in the Southern Ocean (SW Pacific sector): the importance of particle flux, particle composition and advection , 2003 .

[70]  Shawn J. Marshall,et al.  Freshwater Forcing of Abrupt Climate Change During the Last Glaciation , 2001, Science.

[71]  E. Cortijo,et al.  Zooming in on Heinrich layers , 2001 .

[72]  F. Joos,et al.  Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio , 2000 .

[73]  A. Bollhöfer,et al.  Protactinium determination in manganese crust VA13/2 by thermal ionization mass spectrometry (TIMS) , 1999 .

[74]  E. Yu,et al.  Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data , 1996, Nature.

[75]  M. Maslin,et al.  Chronology for climate change: Developing age models for the biogeochemical ocean flux study cores , 1995 .

[76]  Elsa Cortijo,et al.  SURFACE AND DEEP HYDROLOGY OF THE NORTHERN ATLANTIC OCEAN DURING THE PAST 150 000 YEARS , 1995 .

[77]  R. Schneider,et al.  An automated leaching method for the determination of opal in sediments and particulate matter , 1993 .

[78]  J. Andrews,et al.  Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic , 1992 .

[79]  W. Broecker,et al.  Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period , 1992, Nature.

[80]  J. Duplessy,et al.  Changes in surface salinity of the North Atlantic Ocean during the last deglaciation , 1992, Nature.

[81]  W. Broecker,et al.  Origin of the northern Atlantic's Heinrich events , 1992 .

[82]  W. Broecker,et al.  A salt oscillator in the glacial Atlantic? 1. The concept , 1990 .

[83]  H. Heinrich,et al.  Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years , 1988, Quaternary Research.

[84]  P. Brewer,et al.  Removal of 230Th and 231Pa at ocean margins , 1983 .

[85]  W. Ruddiman North Atlantic Ice-Rafting: A Major Change at 75,000 Years Before the Present , 1977, Science.

[86]  O. L. Bandy Origin and Development of Globorotalia (Turborotalia) Pachyderma (Ehrenberg) , 1972 .