Lithium mineralization during evolution of a magmatic–hydrothermal system: Mineralogical evidence from Li-mineralized pegmatites in Altai, NW China

[1]  Qiang Wang,et al.  RECOGNITION OF A 600-KM-LONG LATE TRIASSIC RARE METAL (Li-Rb-Be-Nb-Ta) PEGMATITE BELT IN THE WESTERN KUNLUN OROGENIC BELT, WESTERN CHINA , 2022, Economic Geology.

[2]  Liang Zhang,et al.  Spodumene: The key lithium mineral in giant lithium-cesium-tantalum pegmatites , 2022, Yanshi - xuebao : jikan.

[3]  D. London A Rayleigh model of cesium fractionation in granite-pegmatite systems , 2021, American Mineralogist.

[4]  Pengju Li,et al.  Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, northeast Hunan, China: Implications for its petrogenesis and mineralization potential , 2021 .

[5]  Wu-Xian Li,et al.  Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China , 2021 .

[6]  Qin Kezhang,et al.  Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China , 2021, Acta Petrologica Sinica.

[7]  Li Changhao,et al.  Geochemical characteristics and significance of apatite from the Koktokay pegmatitic rare-metal deposit, Altay, Xinjiang , 2021, Yanshi - xuebao : jikan.

[8]  He Wang,et al.  Magmatic-hydrothermal processes recorded by muscovite andcolumbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China , 2020 .

[9]  F. Holtz,et al.  Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression , 2020, Lithos.

[10]  Lei Xie,et al.  Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith , 2020 .

[11]  Saleem H. Ali,et al.  Sustainable minerals and metals for a low-carbon future , 2020, Science.

[12]  C. Yuan,et al.  Mineralogical constraints on the magmatic–hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China , 2020, Lithos.

[13]  P. Davidson,et al.  The enhanced element enrichment in the supercritical states of granite–pegmatite systems , 2019, Acta Geochimica.

[14]  D. London,et al.  Experimental Crystallization of the Macusani Obsidian, with Applications to Lithium-rich Granitic Pegmatites , 2017, Journal of Petrology.

[15]  D. Chew,et al.  The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite , 2018, Geochimica et Cosmochimica Acta.

[16]  D. London Ore-forming processes within granitic pegmatites , 2018, Ore Geology Reviews.

[17]  Hui Zhang,et al.  Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope , 2018 .

[18]  Rucheng Wang,et al.  Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China) , 2017 .

[19]  Fu-guan Wu,et al.  Highly fractionated granites: Recognition and research , 2017, Science China Earth Sciences.

[20]  D. London Reading Pegmatites: Part 3—What Lithium Minerals Say , 2017 .

[21]  P. Davidson,et al.  Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — Consequences for the formation of pegmatites and ore deposits , 2016 .

[22]  K. Qin,et al.  Mineralogy of the Koktokay No. 3 pegmatite, Altai, NW China: implications for evolution and melt–fluid processes of rare-metal pegmatites , 2015 .

[23]  A. Gerdes,et al.  In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS , 2015 .

[24]  D. Baker,et al.  Exploring the effect of lithium on pegmatitic textures: An experimental study , 2014 .

[25]  P. Muchez,et al.  Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups , 2014 .

[26]  S. Uehara,et al.  Secondary phosphates in montebrasite and amblygonite from Nagatare, Fukuoka Prefecture, Japan , 2014 .

[27]  Chao Zhang,et al.  New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton , 2014 .

[28]  Z. Qi Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit,Altai , 2013 .

[29]  C. Yuan,et al.  Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt , 2012 .

[30]  C. Yuan,et al.  Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: A review , 2011 .

[31]  C. Yuan,et al.  Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China , 2011 .

[32]  C. Yuan,et al.  Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids , 2011 .

[33]  LU Zheng-hang LA-ICPMS U-Pb Zircon Geochronology of the Altai Pegmatites and Its Geological Significance , 2011 .

[34]  C. Yuan,et al.  The ∼390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? , 2010, American Journal of Science.

[35]  C. Yuan,et al.  Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution , 2010 .

[36]  C. Yuan,et al.  Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions , 2009 .

[37]  Hui Zhang,et al.  Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China) , 2009 .

[38]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[39]  C. Yuan,et al.  Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution , 2008 .

[40]  S. Salvi,et al.  Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada , 2008 .

[41]  Hui Zhang,et al.  Chemical and textural features of tourmaline from the spodumene-subtype Koktokay No. 3 pegmatite, Altai, northwestern China: A record of magmatic to hydrothermal evolution , 2008 .

[42]  Hui Zhang,et al.  Tourmalines from the Koktokay No.3 pegmatite, Altai, NW China: spectroscopic characterization and relationships with the pegmatite evolution , 2008 .

[43]  Tao Wang,et al.  SHRIMP U–Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite , 2007 .

[44]  C. Yuan,et al.  Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids , 2007 .

[45]  E. Roda,et al.  Micas of the muscovite–lepidolite series from Karibib pegmatites, Namibia , 2007, Mineralogical Magazine.

[46]  R. Linnen,et al.  RARE-ELEMENT GEOCHEMISTRY AND MINERAL DEPOSITS PREFACE , 2006 .

[47]  Hui Zhang,et al.  The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma , 2005 .

[48]  A. Zhang,et al.  Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China , 2004, Mineralogical Magazine.

[49]  Hui Zhang,et al.  OCCURRENCES OF FOITITE AND ROSSMANITE FROM THE KOKTOKAY NO. 3 GRANITIC PEGMATITE DYKE, ALTAI, NORTHWESTERN CHINA: A RECORD OF HYDROTHERMAL FLUIDS , 2004 .

[50]  B. Windley,et al.  Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution , 2002, The Journal of Geology.

[51]  I. Veksler,et al.  An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa , 2002 .

[52]  D. London,et al.  Experimental Silicate–Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain , 1999 .

[53]  R. Trumbull,et al.  On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation , 1997, Mineralogical Magazine.

[54]  R. Seltmann,et al.  Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids , 1997 .

[55]  B. Jolliff,et al.  PETROGENETIC LINKS AMONG GRANITES AND PEGMATITES IN THE HARNEY PEAK RARE-ELEMENT GRANITE-PEGMATITE SYSTEM. BLACK HILLS, SOUTH DAKOTA , 1992 .

[56]  E. Messing,et al.  Home screening for hematuria: results of a multiclinic study. , 1992, The Journal of urology.

[57]  D. London Holmquistite as a guide to pegmatitic rare metal deposits , 1986 .

[58]  A. J. Anderson,et al.  Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms , 1985 .

[59]  DoNer-o M. Bunr,et al.  Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho District, Arizona , 1982 .

[60]  D. Stewart Petrogenesis of lithium-rich pegmatites , 1978 .

[61]  R. Mulligan Lithium Distribution in Canadian Granitoid Rocks , 1973 .