Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs

A graph is HHD-free is it does not contain a house (i.e., the complement of P 5), a hole (a cycle of length at least 5) or a domino (the graph obtained from two 4-cycles by identifying an edge in one C 4 with an edge in the other C 4) as an induced subgraph. The minimum fill-in problem is the problem of finding a chordal supergraph with the smallest possible number of edges. The treewidth problem is the problem of finding a chordal embedding of the graph with the smallest possible clique number. In this note we show that both problems are solvable in polynomial time for HHD-free graphs.

[1]  Ton Kloks,et al.  Treewidth of Circle Graphs , 1993, ISAAC.

[2]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[3]  Chính T. Hoàng,et al.  Optimizing weakly triangulated graphs , 1990, Graphs Comb..

[4]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[5]  Chính T. Hoàng,et al.  Optimizing weakly triangulated graphs , 1989 .

[6]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  Dieter Kratsch,et al.  Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.

[9]  Andreas Parra,et al.  How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.

[10]  S. Olariu,et al.  On the semi-perfect elimination , 1988 .

[11]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[12]  Maw-Shang Chang,et al.  Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.

[13]  Jeremy P. Spinrad,et al.  Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .

[14]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[15]  G. Dirac On rigid circuit graphs , 1961 .

[16]  Dieter Kratsch,et al.  Treewidth and Minimum Fill-in on d-Trapezoid Graphs , 1998, J. Graph Algorithms Appl..

[17]  Ton Kloks Treewidth of Circle Graphs , 1996, Int. J. Found. Comput. Sci..

[18]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[19]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..