Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs
暂无分享,去创建一个
[1] Ton Kloks,et al. Treewidth of Circle Graphs , 1993, ISAAC.
[2] Peter L. Hammer,et al. Completely separable graphs , 1990, Discret. Appl. Math..
[3] Chính T. Hoàng,et al. Optimizing weakly triangulated graphs , 1990, Graphs Comb..
[4] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[5] Chính T. Hoàng,et al. Optimizing weakly triangulated graphs , 1989 .
[6] Jeremy P. Spinrad,et al. Bipartite permutation graphs , 1987, Discret. Appl. Math..
[7] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[8] Dieter Kratsch,et al. Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.
[9] Andreas Parra,et al. How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.
[10] S. Olariu,et al. On the semi-perfect elimination , 1988 .
[11] C. Pandu Rangan,et al. Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..
[12] Maw-Shang Chang,et al. Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.
[13] Jeremy P. Spinrad,et al. Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .
[14] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[15] G. Dirac. On rigid circuit graphs , 1961 .
[16] Dieter Kratsch,et al. Treewidth and Minimum Fill-in on d-Trapezoid Graphs , 1998, J. Graph Algorithms Appl..
[17] Ton Kloks. Treewidth of Circle Graphs , 1996, Int. J. Found. Comput. Sci..
[18] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[19] Rolf H. Möhring,et al. The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..