On The Restricted Size Ramsey Number

Abstract Let F , G , and H be simple graphs. We say F → ( G , H ) if for every 2-coloring of the edges of F there exists a monochromatic G or H in F . The Ramsey number r ( G , H ) is defined as min {| V ( F )|: F → ( G , H )}, while the restricted size Ramsey number r ∗( G , H ) is defined as min {| E ( F )|: F → ( G , H ), | V ( F ) | = r ( G , H )}. In this paper, we give lower and upper bounds for the restricted size Ramsey number for a path P 3 versus cycles Cn .

[1]  Richard H. Schelp,et al.  Path-cycle Ramsey numbers , 1974, Discret. Math..

[2]  Ingrid Mengersen,et al.  Size Ramsey results for paths versus stars , 1998, Australas. J Comb..

[3]  Edy Tri Baskoro,et al.  On Ramsey-Type Problems , 2009 .

[4]  Ralph J. Faudree,et al.  Size Ramsey numbers for small-order graphs , 1983, J. Graph Theory.

[5]  Ralph J. Faudree,et al.  Size Ramsey numbers involving stars , 1983, Discret. Math..

[6]  P. Erdos,et al.  The size Ramsey number , 1978 .