Regularity of a vector potential problem and its spectral curve

In this note we study a minimization problem for a vector of measures subject to a prescribed interaction matrix in the presence of external potentials. The conductors are allowed to have zero distance from each other but the external potentials satisfy a growth condition near the common points. We then specialize the setting to a specific problem on the real line which arises in the study of certain biorthogonal polynomials (studied elsewhere) and we prove that the equilibrium measures solve a pseudo-algebraic curve under the assumption that the potentials are real analytic. In particular, the supports of the equilibrium measures are shown to consist of a finite union of compact intervals.

[1]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[2]  Antonio Degasperis,et al.  A test in Asymptotic Integrability of 1 + 1 wave equations , 1998 .

[3]  K. Mclaughlin Asymptotic analysis of random matrices with external source and a family of algebraic curves , 2006, math-ph/0610050.

[4]  L. Pastur Spectral and probabilistic aspects of matrix models , 1996 .

[5]  Владимир Генрихович Лысов,et al.  Сильная асимптотика аппроксимаций Эрмита - Паде для системы стилтьесовских функций с весом Лагерра@@@Strong asymptotics of the Hermite - Padé approximants for a system of Stieltjes functions with Laguerre weight , 2005 .

[6]  M. A. Lapik Support of the extremal measure in a vector equilibrium problem , 2006 .

[7]  Мария Александровна Лапик,et al.  О носителе экстремальной меры в векторной задаче равновесия@@@Support of the extremal measure in a vector equilibrium problem , 2006 .

[8]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[9]  Андрей Александрович Гончар,et al.  Об аппроксимациях Эрмита - Паде для систем функций марковского типа@@@Hermite - Pade approximants for systems of Markov-type functions , 1997 .

[10]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[11]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[12]  E. Rakhmanov,et al.  On the equilibrium problem for vector potentials , 1985 .

[13]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[14]  A. Aptekarev Strong asymptotics of multiply orthogonal polynomials for Nikishin systems , 1999 .

[15]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[16]  Walter Van Assche,et al.  Riemann-Hilbert Problems for Multiple Orthogonal Polynomials , 2001 .

[17]  Александр Иванович Аптекарев,et al.  Сильная асимптотика многочленов совместной ортогональности для систем Никишина@@@Strong asymptotics of multiply orthogonal polynomials for Nikishin systems , 1999 .

[18]  J. Szmigielski,et al.  Peakons and Cauchy Biorthogonal Polynomials , 2007, 0711.4082.

[19]  J Nuttall,et al.  Asymptotics of diagonal Hermite-Padé polynomials , 1984 .

[20]  V. N. Sorokin,et al.  Simultaneous Padé approximants of functions of Stieltjes type , 1990 .

[21]  Marco Bertola,et al.  Cauchy biorthogonal polynomials , 2009, J. Approx. Theory.

[22]  J. Szmigielski,et al.  The Cauchy Two-Matrix Model , 2008, 0804.0873.

[23]  E. Rakhmanov,et al.  Hermite-Pade approximants for systems of Markov-type functions , 1997 .

[24]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .