Prediction of fatigue life improvement in natural rubber using configurational stress

To some extent, continua can no longer be considered as free of defects. Experimental observations on natural rubber revealed the existence of distributed microscopic defects which grow upon cyclic loading. However, these observations are not incorporated in the classical fatigue life predictors for rubber, i.e. the maximum principal stretch, the maximum principal stress and the strain energy. Recently, Verron et al. [Verron, E., Le Cam, J.B., Gornet, L., 2006. A multiaxial criterion for crack nucleation in rubber. Mech. Res. Commun. 33, 493-498] considered the configurational stress tensor to propose a fatigue life predictor for rubber which takes into account the presence of microscopic defects by considering that macroscopic crack nucleation can be seen as the result of the propagation of microscopic defects. For elastic materials, it predicts privileged regions of rubber parts in which macroscopic fatigue crack might appear. Here, we will address our interest to a broader context. Rubber is assumed to exhibit inelastic behavior, characterized by hysteresis, under fatigue loading conditions. The configurational mechanics-based predictor is modified to incorporate inelastic constitutive equations. Afterwards, it is used to predict fatigue life. The emphasis of the present work is laid on the prediction of the well-known fatigue life improvement in natural rubber under tension-tension cyclic loading.

[1]  Ali Fatemi,et al.  A literature survey on fatigue analysis approaches for rubber , 2002 .

[2]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[3]  E. Verron,et al.  A multiaxial criterion for crack nucleation in rubber , 2006 .

[4]  Gérard A. Maugin,et al.  Material Forces: Concepts and Applications , 1995 .

[5]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  On the properties of the Eshelly tensor , 1997 .

[7]  G. Herrmann,et al.  Fracture criteria based on local properties of the Eshelby tensor , 2002 .

[8]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[9]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[10]  P. Chadwick,et al.  Applications of an energy-momentum tensor in non-linear elastostatics , 1975 .

[11]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[12]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting , 2001 .

[13]  Andri Andriyana,et al.  Effect of the hysteretic response of elastomers on thefatigue life , 2005 .

[14]  G. Herrmann,et al.  Properties of the Eshelby Tensor , 2000 .

[15]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[16]  P. Albouy,et al.  Stress-Induced Crystallization Properties of Natural and Synthetic CIS-Polyisoprene , 2004 .

[17]  G. Cailletaud,et al.  Haigh diagram for fatigue crack initiation prediction of natural rubber components , 1999 .

[18]  E. Verron,et al.  Mechanism of Fatigue Crack Growth in Carbon Black Filled Natural Rubber , 2004 .

[19]  G. Maugin,et al.  Eshelby's stress tensors in finite elastoplasticity , 2000 .

[20]  I. Rao Effect of the rate of deformation on the crystallization behavior of polymers , 2003 .

[21]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[22]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[23]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[24]  G. Maugin Remarks on the Eshelbian thermomechanics of materials , 2002 .

[25]  A. Tobolsky,et al.  A New Approach to the Theory of Relaxing Polymeric Media , 1946 .

[26]  S. Ahzi,et al.  Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature , 2003 .

[27]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[28]  Ch. Tsakmakis,et al.  Finite deformation viscoelasticity laws , 2000 .

[29]  Alexander Lion,et al.  A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation , 1996 .

[30]  F. Abraham,et al.  The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers , 2005 .

[31]  C. Inglis Stresses in a plate due to the presence of cracks and sharp corners , 1913 .

[32]  E. Verron,et al.  Constitutive models for rubber V , 2008 .

[33]  S. M. Cadwell,et al.  Dynamic Fatigue Life of Rubber , 1940 .

[34]  Eliot Fried,et al.  Configurational stress, yield and flow in rate–independent plasticity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  R. Rivlin,et al.  Rupture of rubber. I. Characteristic energy for tearing , 1953 .

[36]  M. Negahban Modeling the thermomechanical effects of crystallization in natural rubber: I. The theoretical structure , 2000 .

[37]  S. M. Cadwell,et al.  THE DYNAMIC FATIGUE LIFE OF RUBBER , 1939 .

[38]  George Herrmann,et al.  Mechanics in material space , 2000 .

[39]  K. Rajagopal,et al.  On The Role of the Eshelby Energy-Momentum Tensor in Materials with Multiple Natural Configurations , 2005 .

[40]  S. Toki,et al.  Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique , 2000 .

[41]  W. V. Mars,et al.  Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions , 2002 .

[42]  Dietmar Gross,et al.  Configurational forces and their application in solid mechanics , 2003 .