Blood Clearance Kinetics, Biodistribution, and Radiation Dosimetry of a Kit-Formulated Integrin αvβ3-Selective Radiotracer 99mTc-3PRGD2 in Non-Human Primates

Purpose99mTc-3PRGD2 is a 99mTc-labeled dimeric cyclic RGD peptide with increased receptor binding affinity and improved kinetics for in vivo imaging of integrin αvβ3 expression in nude mouse model. To accelerate its clinical translation, we reported here the evaluation of the kit-formulated 99mTc-3PRGD2 in healthy cynomolgus primates for its blood clearance kinetics, biodistribution, and radiation dosimetry.ProceduresHealthy cynomolgus primates (4.1 ± 0.7 kg, n = 5) were anesthetized, and the venous blood samples were collected via a femoral vein catheter at various time points after injection of ~555 MBq of 99mTc-3PRGD2. Serial whole-body scans were performed with a dual-head single photon emission computed tomography system after administering ~555 MBq of 99mTc-3PRGD2 in the non-human primates, and the radiation dosimetry estimate was calculated.Results99mTc-3PRGD2 could be easily obtained from freeze-dried kits with high radiochemical purity (>95%) and high specific activity (~5 Ci/μmol). 99mTc-3PRGD2 had a rapid blood clearance with less than 1% of the initial radioactivity remaining in the blood circulation at 60 min postinjection. No adverse reactions were observed up to 4 weeks after the repeated dosing. The whole-body images exhibited high kidney uptake of 99mTc-3PRGD2 and high radioactivity accumulation in the bladder, demonstrating the rapid renal clearance of this tracer. The highest radiation doses of 99mTc-3PRGD2 were found in the kidneys (13.2 ± 1.08 μGy/MBq) and the bladder wall (33.1 ± 1.91 μGy/MBq).Conclusion99mTc-3PRGD2 can be readily available using the kit formulation. This tracer is safe and well tolerated, and no adverse events occurred in non-human primates. Further clinical testing and translation of 99mTc-3PRGD2 for noninvasive imaging of integrin αvβ3 in humans are warranted.

[1]  Weibo Cai,et al.  Imaging of integrins as biomarkers for tumor angiogenesis. , 2008, Current pharmaceutical design.

[2]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[3]  M. Schwaiger,et al.  PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[4]  Fan Wang,et al.  Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  Fan Wang,et al.  68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[6]  Kowalsky Rj,et al.  Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine, 2nd edition , 2006 .

[7]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[8]  Young-Seung Kim,et al.  Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. , 2009, Bioconjugate chemistry.

[9]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[10]  Young-Seung Kim,et al.  Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. , 2009, Molecular pharmaceutics.

[11]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[12]  Kara D. Weatherman,et al.  Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine , 2011 .

[13]  Horst Kessler,et al.  Positron Emission Tomography Using [18F]Galacto-RGD Identifies the Level of Integrin αvβ3 Expression in Man , 2006, Clinical Cancer Research.

[14]  Weibo Cai,et al.  Multimodality Molecular Imaging of Tumor Angiogenesis , 2008, Journal of Nuclear Medicine.

[15]  Shuang Liu Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. , 2009, Bioconjugate chemistry.