Conducting polymer based electrochemical biosensors.

Conducting polymer (CP)-based electrochemical biosensors have gained great attention as such biosensor platforms are easy and cost-effective to fabricate, and provide a direct electrical readout for the presence of biological analytes with high sensitivity and selectivity. CP materials themselves are both sensing elements and transducers of the biological recognition event at the same time, simplifying sensor designs. This review summarizes the advances in electrochemical biosensors based on CPs. Recognition probe immobilisation techniques, transduction mechanisms and detection of various target biomolecules have been discussed in detail. Efforts to miniaturize CP-based electrochemical biosensors and fabrication of sensor arrays are also briefly reviewed.

[1]  Asha Chaubey,et al.  Application of conducting polymers to biosensors. , 2002, Biosensors & bioelectronics.

[2]  Michael L. Turner,et al.  Non-lithographic fabrication of PEDOT nano-wires between fixed Au electrodes , 2006 .

[3]  David E Williams,et al.  Direct writing of conducting polymers. , 2013, Macromolecular rapid communications.

[4]  M. Umaña,et al.  Protein-modified electrodes. The glucose oxidase/polypyrrole system , 1986 .

[5]  Ricardo P. Nogueira,et al.  Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure , 2015 .

[6]  Hui Peng,et al.  DNA detection using functionalized conducting polymers. , 2011, Methods in molecular biology.

[7]  W. Marsden I and J , 2012 .

[8]  Stefan Nowy,et al.  The diamond/aqueous electrolyte interface: an impedance investigation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[9]  James P Chambers,et al.  Biosensor recognition elements. , 2008, Current issues in molecular biology.

[10]  S. F. D’souza,et al.  Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor. , 2009, Biosensors & bioelectronics.

[11]  M. L. Mena,et al.  Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes , 2007 .

[12]  T. Livache,et al.  Reversible oligonucleotide immobilisation based on biotinylated polypyrrole film , 2001 .

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[15]  J. Kong,et al.  Immunoassays based on microelectrodes arrayed on a silicon chip for high throughput screening of liver fibrosis markers in human serum. , 2006, Biosensors & bioelectronics.

[16]  A. Heeger Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture) Copyright(c) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. , 2001, Angewandte Chemie.

[17]  Yoon-Bo Shim,et al.  Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. , 2003, Biosensors & bioelectronics.

[18]  P. Krzyczmonik,et al.  Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). , 2015, Bioelectrochemistry.

[19]  Tse-Chuan Chou,et al.  Amperometric protein sensor - fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. , 2006, Biosensors & bioelectronics.

[20]  Mian Jiang,et al.  Toward Genolelectronics: Nucleic Acid Doped Conducting Polymers , 2000 .

[21]  T. Tatsuma,et al.  Peroxidase-incorporated polypyrrole membrane electrodes , 1992 .

[22]  Christopher R. Lowe,et al.  Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors , 1986 .

[23]  G. Evtugyn Biosensors: Essentials , 2014 .

[24]  Thierry Livache,et al.  Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA: Preliminary study of real time monitoring by in situ techniques , 2001 .

[25]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[26]  Adam Heller,et al.  Electrochemical glucose sensors and their applications in diabetes management. , 2008, Chemical reviews.

[27]  M. Pirrung How to make a DNA chip. , 2002, Angewandte Chemie.

[28]  Jang B. Rampal DNA arrays: methods and protocols. , 2001 .

[29]  Jae-Joon Lee,et al.  Electrochemical DNA Hybridization Sensors Based on Conducting Polymers , 2015, Sensors.

[30]  A. Gopalan,et al.  Fabrication of horseradish peroxidase immobilized poly(N-[3-(trimethoxy silyl)propyl]aniline) gold nanorods film modified electrode and electrochemical hydrogen peroxide sensing , 2013 .

[31]  Xiaohui Hou,et al.  Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. , 2007, Analytical biochemistry.

[32]  Ray H. Baughman,et al.  Directional growth of polypyrrole and polythiophene wires , 2009 .

[33]  F. Garnier,et al.  Conjugated polymer-based DNA chip with real time access and femtomol detection threshold , 2007 .

[34]  A. Malinauskas,et al.  Chemical deposition of conducting polymers , 2001 .

[35]  P. Żółtowski,et al.  On the electrical capacitance of interfaces exhibiting constant phase element behaviour , 1998 .

[36]  C. Adley,et al.  Comparison Between DNA Immobilization Techniques on a Redox Polymer Matrix , 2011 .

[37]  Wu Lei,et al.  Conducting polymer composites with graphene for use in chemical sensors and biosensors , 2014, Microchimica Acta.

[38]  Ohseok Kwon,et al.  Conducting Polymer-Based Nanohybrid Transducers: A Potential Route to High Sensitivity and Selectivity Sensors , 2014, Sensors.

[39]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[40]  David E. Williams,et al.  The solvent-induced collapse of a redox-active conducting polymer and the consequence on its DNA-sensing ability , 2011 .

[41]  T. Yamauchi,et al.  Covalent immobilization of glucose oxidase on poly[1-(2-carboxyethyl)pyrrole] film for glucose sensing , 1998 .

[42]  J. Travas-sejdic,et al.  Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. , 2015, Biosensors & bioelectronics.

[43]  T. Livache,et al.  Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. , 1994, Nucleic acids research.

[44]  Nicole Jaffrezic-Renault,et al.  Effect of electrical conditions on an impedimetric immunosensor based on a modified conducting polypyrrole , 2010 .

[45]  J. Travas-sejdic,et al.  Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance. , 2011, Biosensors & bioelectronics.

[46]  F. Lisdat,et al.  The use of electrochemical impedance spectroscopy for biosensing , 2008, Analytical and bioanalytical chemistry.

[47]  M. Ates Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces , 2011 .

[48]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[49]  A. Ramanavičius,et al.  Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode , 2004, Analytical and bioanalytical chemistry.

[50]  Osvaldo N. Oliveira,et al.  A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator , 2006 .

[51]  Giovanna Marrazza,et al.  Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection , 2014 .

[52]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[53]  J. Travas-sejdic,et al.  Intrinsically conducting polymer nanowires for biosensing. , 2014, Journal of materials chemistry. B.

[54]  Effect of Doping Ions on Electrochemical Capacitance Properties of Polypyrrole Films , 2007 .

[55]  Paolo Dario,et al.  Ultra-thin conductive free-standing PEDOT/PSS nanofilms , 2011 .

[56]  T. Livache,et al.  Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator , 2014, Analytical and Bioanalytical Chemistry.

[57]  Huaiguo Xue,et al.  Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film , 1996 .

[58]  J. Bobacka,et al.  EIS study of the redox reaction of Fe(CN)63−/4− at poly(3,4-ethylenedioxythiophene) electrodes: influence of dc potential and cOx:cRed ratio , 2004 .

[59]  Yoon-Bo Shim,et al.  Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. , 2003, Biosensors & bioelectronics.

[60]  Guicun Li,et al.  Synthesis of Dendritic Polyaniline Nanofibers in a Surfactant Gel , 2004 .

[61]  Jules Beekwilder,et al.  Antibody orientation on biosensor surfaces: a minireview. , 2013, The Analyst.

[62]  Keiichi Kaneto,et al.  An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. , 2005, Biomaterials.

[63]  T. Livache,et al.  Polypyrrole DNA chip on a silicon device: example of hepatitis C virus genotyping. , 1998, Analytical biochemistry.

[64]  S. Timur,et al.  Use of a thiophene-based conducting polymer in microbial biosensing , 2008 .

[65]  Alvo Aabloo,et al.  Electrochemistry of interlayer supported polypyrrole tri-layer linear actuators , 2014 .

[66]  H. Hassan,et al.  Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies , 2007 .

[67]  Seung-Cheol Chang,et al.  The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. , 2006, Biosensors & bioelectronics.

[68]  M. Smyth,et al.  Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. , 1996, The Analyst.

[69]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[70]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[71]  Keiichi Kaneto,et al.  Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. , 2007, Biosensors & bioelectronics.

[72]  Joong-Hoon Cho,et al.  Electrochemical adsorption of glucose oxidase onto polypyrrole film for the construction of a glucose biosensor , 1996 .

[73]  David E. Williams,et al.  High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers. , 2011, Analytical chemistry.

[74]  Y. Shim,et al.  Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. , 2004, Biosensors & bioelectronics.

[75]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[76]  D. C. Silverman,et al.  Electrochemical Impedance: Analysis and Interpretation , 1993 .

[77]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[78]  Gordon G. Wallace,et al.  Conducting polymer sensors for the amperometric detection of proteins in a flow system - the use of sulfonated dye counterions to induce selectivity , 1997 .

[79]  Kazuhiko Ishihara,et al.  Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity. , 2011, Analytical chemistry.

[80]  Zhixiang Wei,et al.  Conducting polymer nanostructures and their application in biosensors. , 2010, Journal of colloid and interface science.

[81]  Christian Soeller,et al.  Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. , 2007, Biosensors & bioelectronics.

[82]  K. Ramanathan,et al.  Principles and applications of thermal biosensors. , 2001, Biosensors & bioelectronics.

[83]  P. Kulesza,et al.  Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic-inorganic film of structured Prussian Blue and PEDOT. , 2007, Bioelectrochemistry.

[84]  Mark W Grinstaff,et al.  Direct-writing of polymer nanostructures: poly(thiophene) nanowires on semiconducting and insulating surfaces. , 2002, Journal of the American Chemical Society.

[85]  Nguyen Van Hieu,et al.  Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole , 2011 .

[86]  Joseph Wang,et al.  New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films , 1999 .

[87]  N. Jaffrezic‐Renault,et al.  Impedimetric immunosensor using avidin-biotin for antibody immobilization. , 2002, Bioelectrochemistry.

[88]  T. Hianik,et al.  Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole , 2013, Analytical and Bioanalytical Chemistry.

[89]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[90]  David E. Williams,et al.  An improved terthiophene conducting polymer for DNA-sensing , 2011 .

[91]  Jadranka Travas-Sejdic,et al.  Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. , 2015, Biosensors & bioelectronics.

[92]  B. D. Malhotra,et al.  Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion‐doped polypyrrole film , 2001 .

[93]  David E. Williams,et al.  The electrochemical growth of conducting polymer “nanowires” , 2012 .

[94]  F. Lisdat,et al.  Interaction of Fructose Dehydrogenase with a Sulfonated Polyaniline: Application for Enhanced Bioelectrocatalysis , 2015 .

[95]  A. Heeger,et al.  The concept of ‘doping’ of conducting polymers: the role of reduction potentials , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[96]  Jun Kameoka,et al.  Polymeric Nanowire Chemical Sensor , 2004 .

[97]  Mamas I. Prodromidis,et al.  Impedimetric immunosensors—A review , 2010 .

[98]  S. Timur,et al.  A functional immobilization matrix based on a conducting polymer and functionalized gold nanoparticles: Synthesis and its application as an amperometric glucose biosensor , 2013 .

[99]  Rajesh,et al.  Biomolecular immobilization on conducting polymers for biosensing applications. , 2007, Biomaterials.

[100]  C. Schmidt,et al.  Surface modification of the conducting polymer, polypyrrole, via affinity peptide. , 2013, Journal of biomedical materials research. Part A.

[101]  Alvo Aabloo,et al.  Electrolyte and solvent effects in PPy/DBS linear actuators , 2015 .

[102]  Yang‐Kyu Choi,et al.  Improvement of Sensitivity and Limit of Detection in a Nanogap Biosensor by Controlling Surface Wettability , 2013 .

[103]  S. Cosnier Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. , 1999, Biosensors & bioelectronics.

[104]  D. Chan,et al.  Immunosensors--principles and applications to clinical chemistry. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[105]  S. Gottesfeld,et al.  Characterization and Long‐Term Performance of Polyaniline‐Based Electrochemical Capacitors , 2000 .

[106]  T. Livache,et al.  Synthesis of a biotin functionalized pyrrole and its electropolymerization: toward a versatile avidin biosensor , 1998 .

[107]  E. Paleček,et al.  Electrochemistry of nucleic acids. , 2012, Chemical reviews.

[108]  Thierry Delair,et al.  Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles , 1999 .

[109]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[110]  L. Abrantes,et al.  Study of DNA hybridization on polypyrrole grafted with oligonucleotides by photocurrent spectroscopy. , 2001, Biosensors & bioelectronics.

[111]  Josep Samitier,et al.  Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes. , 2015, Biosensors & bioelectronics.

[112]  H. Korri-Youssoufi,et al.  Direct chemical functionalization of as-grown electroactive polypyrrole film containing leaving groups , 1996 .

[113]  Christian Soeller,et al.  Polymeric Acid Doped Polyaniline Nanotubes for Oligonucleotide Sensors , 2007 .

[114]  Chunzhong Li,et al.  Amperometric biosensor based on carbon nanotubes coated with polyaniline/ dendrimer-encapsulated Pt nanoparticles for glucose detection , 2009 .

[115]  E. Southern,et al.  Molecular interactions on microarrays , 1999, Nature Genetics.

[116]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[117]  O. Inganäs,et al.  Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. , 2008, Nano letters.

[118]  K. Ramanathan,et al.  Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. , 2005, Journal of the American Chemical Society.

[119]  J. Tamaoka,et al.  Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. , 1996, Nucleic acids research.

[120]  I. Karube,et al.  The application of ferrocene-modified n-type silicon in glucose biosensors , 1993 .

[121]  G. Bayramoglu,et al.  Covalent immobilisation of invertase onto a reactive film composed of 2-hydroxyethyl methacrylate and glycidyl methacrylate: properties and application in a continuous flow system , 2003 .

[122]  W. Knoll,et al.  Functional Polymer Films: 2 Volume Set , 2011 .

[123]  Andrew Campitelli,et al.  Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. , 2004, Journal of biochemical and biophysical methods.

[124]  M. Trau,et al.  An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. , 2012, Biosensors & bioelectronics.

[125]  C. Visy,et al.  Development of polymer–dopant interactions during electropolymerization, a key factor in determining the redox behaviour of conducting polymers , 2015, Journal of Solid State Electrochemistry.

[126]  Fang Wei,et al.  Serum creatinine detection by a conducting-polymer-based electrochemical sensor to identify allograft dysfunction. , 2012, Analytical chemistry.

[127]  Andrzej Lasia,et al.  Definition of Impedance and Impedance of Electrical Circuits , 2014 .

[128]  W. Knoll,et al.  Functional polymer films , 2011 .

[129]  Rong Zhang,et al.  Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. , 2013, ACS nano.

[130]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[131]  G. Wallace,et al.  Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin , 1998 .

[132]  P. Pandey A new conducting polymer-coated glucose sensor , 1988 .

[133]  Xiliang Luo,et al.  A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. , 2016, Biosensors & bioelectronics.

[134]  G. Dodin,et al.  DNA adsorption onto conducting polypyrrole , 1997 .

[135]  C. Soeller,et al.  Conducting polymers for electrochemical DNA sensing. , 2009, Biomaterials.

[136]  Jadranka Travas-Sejdic,et al.  The electrochemical growth of highly conductive single PEDOT (conducting polymer):BMIPF6 (ionic liquid) nanowires , 2012 .

[137]  K. Nealson,et al.  The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. , 2008, Bioelectrochemistry.

[138]  Suxia Zhang,et al.  Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor , 2005 .

[139]  William Putzbach,et al.  Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review , 2013, Sensors.

[140]  M. Şenel,et al.  Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite , 2012 .

[141]  Shiho Tokonami,et al.  Development of an observation platform for bacterial activity using polypyrrole films doped with bacteria. , 2015, Analytical chemistry.

[142]  Minhee Yun,et al.  Electrochemically Grown Wires for Individually Addressable Sensor Arrays , 2004 .

[143]  Christopher David Cook,et al.  Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications , 2006 .

[144]  Serge Cosnier,et al.  Electrogeneration of Biotinylated Functionalized Polypyrroles for the Simple Immobilization of Enzymes , 1998 .

[145]  Carole Chaix,et al.  Cylinder-shaped conducting polypyrrole for labelless electrochemical multidetection of DNA. , 2007, Biosensors & bioelectronics.

[146]  E. García-Ruiz,et al.  Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors , 2003 .

[147]  I. Suni Impedance methods for electrochemical sensors using nanomaterials , 2008 .

[148]  Eun Kyu Lee,et al.  Synthesis of Polythiophene Derivatives and Their Application for Electrochemical DNA Sensor , 2004 .

[149]  T. Livache,et al.  Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film , 2004 .

[150]  Christophe Bernard,et al.  A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush , 2015 .

[151]  W. Norde,et al.  Adsorption of proteins from solution at the solid-liquid interface. , 1986, Advances in colloid and interface science.

[152]  A. Ramanavičius,et al.  Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. , 2010, Bioelectrochemistry.

[153]  J. Bobacka,et al.  Direct Electron Transfer of Trametes hirsuta Laccase in a Dual-Layer Architecture of Poly(3,4-ethylenedioxythiophene) Films , 2011 .

[154]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[155]  Krzysztof Miecznikowski,et al.  Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor , 2003 .

[156]  A. Gopalan,et al.  Horseradish Peroxidase (HRP) Immobilized Poly(aniline-co-m-aminophenol) Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor , 2007, Sensors (Basel, Switzerland).

[157]  Guojin Zhang,et al.  Polyaniline nanowires on Si surfaces fabricated with DNA templates. , 2004, Journal of the American Chemical Society.

[158]  Henrik Stubb,et al.  Molecular field‐effect transistors using conducting polymer Langmuir–Blodgett films , 1990 .

[159]  Chih-Ming Ho,et al.  Bio/abiotic interface constructed from nanoscale DNA dendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. , 2009, Small.

[160]  Christian Soeller,et al.  Label-free electrochemical DNA sensor based on functionalised conducting copolymer. , 2005, Biosensors & bioelectronics.

[161]  Christian Soeller,et al.  Novel Conducting Polymers for DNA Sensing , 2007 .

[162]  C. Toumazou,et al.  Glucose sensors: a review of current and emerging technology , 2009, Diabetic medicine : a journal of the British Diabetic Association.

[163]  W. Norde,et al.  Adsorption, desorption and re-adsorption of proteins on solid surfaces , 1992 .

[164]  Chia-Chun Chen,et al.  Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection , 2009 .

[165]  Mi-Sook Won,et al.  Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements. , 2005, Analytical chemistry.

[166]  Chad A. Mirkin,et al.  Electrostatically Driven Dip‐Pen Nanolithography of Conducting Polymers , 2002 .

[167]  W. Schuhmann,et al.  Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. , 1999, Analytical chemistry.

[168]  Marc Madou,et al.  DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy , 2006 .

[169]  Susumu Tanaka,et al.  Soluble conducting polythiophenes , 1986 .

[170]  Rudolf Holze,et al.  Intrinsically conducting polymers in electrochemical energy technology: Trends and progress , 2014 .