Injectorless quantum cascade lasers

This review focuses on recent progress on injectorless quantum cascade lasers, an increasingly attractive approach in comparison to the “classical” injectorbased concepts. This particularly holds for the wavelength range between 7 and 12 μm, where fundamental vibrational modes of many important molecules exist, so that sensor systems for medical, industrial and military applications highly benefit from these laser sources. The atmospheric transmission window between 8 and 12 μm, with very low damping, also enables free space applications like communication, military countermeasures, and environmental sensors. Injectorless devices operate closer to the original design principle for intersubband lasers as suggested by Suris and Kazarinov [Sov. Phys. Semicond. 5, 707 (1971)]. Therefore, a short description of their features is given in comparison to injectorbased devices. Within recent years, injectorless devices have seen rapid improvement in performance. Best injectorless devices reach threshold current de...

[1]  Scott W. Corzine,et al.  High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .

[2]  Markus-Christian Amann,et al.  High performance injectorless quantum-cascade lasers , 2005 .

[3]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[4]  Markus-Christian Amann,et al.  High-performance injectorless quantum cascade lasers emitting below 6 μm , 2009 .

[5]  Manijeh Razeghi,et al.  Quantum cascade lasers that emit more light than heat , 2010 .

[6]  K. Goossen,et al.  Photovoltaic quantum well infrared detector , 1988 .

[7]  Jérôme Faist,et al.  Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits , 2007 .

[8]  Roland Teissier,et al.  Quantum cascade lasers emitting near 2.6 μm , 2010 .

[9]  A. Kosterev,et al.  Chemical sensors based on quantum cascade lasers , 2002 .

[10]  Kwong-Kit Choi,et al.  Multiple quantum well 10 μm GaAs/AlxGa1−xAs infrared detector with improved responsivity , 1987 .

[11]  S. Katz,et al.  Injectorless quantum cascade laser operating in continuous wave above room temperature , 2009 .

[12]  M. Beck,et al.  Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[13]  Hooman Mohseni,et al.  Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition , 2009 .

[14]  C. Gmachl,et al.  Short Injector Quantum Cascade Lasers , 2010, IEEE Journal of Quantum Electronics.

[15]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[16]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[17]  Markus-Christian Amann,et al.  Low-threshold room-temperature operation of injectorless quantum-cascade lasers: influence of doping density , 2006 .

[18]  Jacob B. Khurgin,et al.  Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[19]  S. Yuen Fast relaxing absorptive nonlinear refraction in superlattices , 1983 .

[20]  N. Ulbrich,et al.  Intersubband staircase laser , 2002 .

[21]  Markus-Christian Amann,et al.  Short-wavelength intersubband staircase lasers, with and without AlAs-blocking barriers , 2007 .

[22]  Carlo Sirtori,et al.  Continuous wave operation of a vertical transition quantum cascade laser above T=80 K , 1995 .

[23]  M. Amann,et al.  Low-threshold injectorless quantum cascade laser with four material compositions , 2008 .

[24]  M. Amann,et al.  High Efficiency Injectorless Quantum Cascade Lasers Emitting at 8.8 $\mu$ m With 2-W Peak Pulsed Power per Facet at Room Temperature , 2010, IEEE Photonics Technology Letters.

[25]  J. Faist,et al.  Room temperature mid-infrared quantum cascade lasers , 1996 .

[26]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[27]  Federico Capasso,et al.  Injectorless quantum-cascade lasers , 2001 .

[28]  Carlo Sirtori,et al.  VERTICAL TRANSITION QUANTUM CASCADE LASER WITH BRAGG CONFINED EXCITED STATE , 1995 .

[29]  M. Amann,et al.  Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers , 2009 .

[30]  M. Amann,et al.  Continuous wave operation of injectorless quantum cascade lasers at low temperatures , 2008 .

[31]  M. Zahniser,et al.  Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers , 2010, IEEE Sensors Journal.

[32]  M. Sugimoto,et al.  Observation of third order optical nonlinearity due to intersubband transitions in AlGaAs/GaAs superlattices , 1991 .

[33]  M. Amann,et al.  Nonlinear gain behavior in injectorless quantum cascade lasers , 2010 .