Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

Silicon is arguably the best electronic material, but not as good an optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS) shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable bandgap. At low hydrogen concentrations, four ground states of single- and double-side hydrogenated BS are characterized with dipole-allowed direct (or quasidirect) bandgaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-side hydrogenated BS structures exhibit direct (or quasidirect) bandgaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high-efficiency, optoelectronic applications.

[1]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[2]  E. Kaxiras,et al.  Adsorption and diffusion of lithium on layered silicon for Li-ion storage. , 2013, Nano letters.

[3]  J. Lin,et al.  Origin of the significantly enhanced optical transitions in layered boron nitride , 2012 .

[4]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[5]  Su-Huai Wei,et al.  Towards direct-gap silicon phases by the inverse band structure design approach. , 2013, Physical review letters.

[6]  Bjørn Petter Jelle,et al.  Building integrated photovoltaic products: A state-of-the-art review and future research opportunities , 2012 .

[7]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[8]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[9]  Qiang Xu,et al.  Theoretical study of corundum as an ideal gate dielectric material for graphene transistors , 2011, 1110.4923.

[10]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[11]  J. Ni,et al.  Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study , 2013 .

[12]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[13]  B. Grandidier,et al.  Synthesis and electrical conductivity of multilayer silicene , 2014 .

[14]  R. Little,et al.  Crystalline silicon photovoltaics: the hurdle for thin films , 1997 .

[15]  Jinlong Yang,et al.  Nearly free electron superatom states of carbon and boron nitride nanotubes. , 2010, Nano letters.

[16]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[17]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[18]  C. Kamal,et al.  Silicene beyond mono-layers—different stacking configurations and their properties , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  M. Ezawa Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene , 2012, 1204.3971.

[20]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[21]  Alex Zunger,et al.  Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. , 2012, Physical review letters.

[22]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[23]  A. Onton,et al.  Temperature dependence of the band gap of silicon , 1974 .

[24]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[25]  Aron Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advances in Materials.

[26]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[27]  Cheng-Cheng Liu,et al.  Evidence for Dirac fermions in a honeycomb lattice based on silicon. , 2012, Physical review letters.

[28]  Joelson Cott Garcia,et al.  Group IV graphene- and graphane-like nanosheets , 2011, 1204.2875.

[29]  Patrick Vogt,et al.  Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations , 2013, Scientific Reports.

[30]  Arpad Bergh,et al.  The Promise and Challenge of Solid-State Lighting , 2001 .

[31]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[32]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[33]  Li Yang,et al.  Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical Review Letters.

[34]  Philip Kim,et al.  Reversible basal plane hydrogenation of graphene. , 2008, Nano letters.

[35]  K. Sankaran,et al.  Electronic properties of hydrogenated silicene and germanene , 2011 .

[36]  Stefan Goedecker,et al.  Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications , 2012, 1203.5669.

[37]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[38]  G. Day Crystal structure prediction , 2012 .

[39]  B. Hammer,et al.  Bandgap opening in graphene induced by patterned hydrogen adsorption. , 2010, Nature materials.

[40]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[41]  N. Takagi,et al.  Structural transition of silicene on Ag(111) , 2013 .

[42]  H. Xiang,et al.  Overcoming the phase inhomogeneity in chemically functionalized graphene: the case of graphene oxides. , 2013, Physical review letters.

[43]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[44]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[45]  M. Aono,et al.  Multilayer silicene nanoribbons. , 2012, Nano letters.

[46]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[47]  N. Takagi,et al.  Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.

[48]  H. Xiang,et al.  Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. , 2013, Physical review letters.

[49]  E. R. Margine,et al.  Universal behavior of nearly free electron states in carbon nanotubes. , 2006, Physical review letters.

[50]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[51]  J. L. Queisser,et al.  Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .

[52]  S. Soubatch,et al.  Structure and energetics of azobenzene on Ag(111): benchmarking semiempirical dispersion correction approaches. , 2010, Physical review letters.

[53]  Ronaldo Mota,et al.  Ab initio calculations for a hypothetical material: Silicon nanotubes , 2000 .

[54]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[55]  C. Ottaviani,et al.  Evidence of Dirac fermions in multilayer silicene , 2013 .

[56]  C. Ottaviani,et al.  The quasiparticle band dispersion in epitaxial multilayer silicene , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  X. Gong,et al.  Si3AlP: a new promising material for solar cell absorber. , 2012, Journal of the American Chemical Society.

[58]  Linhan Lin,et al.  Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation , 2010 .

[59]  Cohen,et al.  Quasiparticle band structure of bulk hexagonal boron nitride and related systems. , 1995, Physical review. B, Condensed matter.

[60]  Ferreira,et al.  First-principles calculation of alloy phase diagrams: The renormalized-interaction approach. , 1989, Physical review. B, Condensed matter.

[61]  Fan Yang,et al.  d+id' chiral superconductivity in bilayer silicene. , 2012, Physical review letters.

[62]  J. Bergman,et al.  Handbook of luminescent semiconductor materials , 2011 .

[63]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[64]  Erich Wimmer,et al.  Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands in graphite intercalation compounds , 1983 .

[65]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[66]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[67]  Su-Huai Wei,et al.  "Narrow" graphene nanoribbons made easier by partial hydrogenation. , 2009, Nano letters.

[68]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[69]  Bing Huang,et al.  Exotic Geometrical and Electronic Properties in Hydrogenated Graphyne , 2013 .

[70]  Rolf Erni,et al.  Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide , 2010, Advanced materials.