Key innovations and the diversification of Hymenoptera

[1]  B. O’Meara,et al.  A flexible method for estimating tip diversification rates across a range of speciation and extinction scenarios , 2022, bioRxiv.

[2]  Bonnie B. Blaimer,et al.  Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. , 2022, Molecular phylogenetics and evolution.

[3]  OUP accepted manuscript , 2022, Molecular Biology And Evolution.

[4]  David R. Smith,et al.  Sawflies out of Gondwana: phylogenetics and biogeography of Argidae (Hymenoptera) , 2021, Systematic Entomology.

[5]  M. Benton,et al.  The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. , 2021, The New phytologist.

[6]  A. Polaszek,et al.  An integrated phylogenetic reassessment of the parasitoid superfamily Platygastroidea (Hymenoptera: Proctotrupomorpha) results in a revised familial classification , 2021, Systematic Entomology.

[7]  Seán G. Brady,et al.  Phylogenomics of Ichneumoninae (Hymenoptera, Ichneumonidae) reveals pervasive morphological convergence and the shortcomings of previous classifications , 2021 .

[8]  M. Engel,et al.  Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae , 2021, Cellular and Molecular Life Sciences.

[9]  C. Labandeira,et al.  The History of Insect Parasitism and the Mid-Mesozoic Parasitoid Revolution , 2021 .

[10]  The Evolution and Fossil Record of Parasitism: Identification and Macroevolution of Parasites , 2021 .

[11]  Bonnie B. Blaimer,et al.  Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps , 2020, BMC evolutionary biology.

[12]  S. Brady,et al.  Phylogenomic analyses reveal a rare new genus of wasp (Hymenoptera, Ichneumonidae, Cryptinae) from the Brazilian Atlantic Forest , 2020 .

[13]  S. van Noort,et al.  World Cynipoidea (Hymenoptera): A Key to Higher-Level Groups , 2020, Insect Systematics and Diversity.

[14]  Matthew W. Pennell,et al.  Extant timetrees are consistent with a myriad of diversification histories , 2020, Nature.

[15]  Bonnie B. Blaimer,et al.  A first phylogenomic hypothesis for Eulophidae (Hymenoptera, Chalcidoidea) , 2020, Journal of Natural History.

[16]  D. Chesters The phylogeny of insects in the data‐driven era , 2019, Systematic Entomology.

[17]  Grey T. Gustafson,et al.  Phylogenomic analysis of the beetle suborder Adephaga with comparison of tailored and generalized ultraconserved element probe performance , 2020 .

[18]  D. Rabosky,et al.  Estimating diversification rates on incompletely-sampled phylogenies: theoretical concerns and practical solutions. , 2019, Systematic biology.

[19]  Emmanuel F. A. Toussaint,et al.  Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths , 2019, Proceedings of the National Academy of Sciences.

[20]  Bonnie B. Blaimer,et al.  Ultra-Conserved Elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea) , 2019, bioRxiv.

[21]  Andrew J. Alverson,et al.  Diatoms diversify and turn over faster in freshwater than marine environments * , 2019, Evolution; international journal of organic evolution.

[22]  A. Polaszek,et al.  Optimized DNA extraction and library preparation for minute arthropods: Application to target enrichment in chalcid wasps used for biocontrol , 2019, Molecular ecology resources.

[23]  Seán G. Brady,et al.  Running in circles in phylomorphospace: host environment constrains morphological diversification in parasitic wasps , 2019, Proceedings of the Royal Society B.

[24]  D. J. Brothers Aculeate Hymenoptera: Phylogeny and Classification , 2019, Encyclopedia of Social Insects.

[25]  D. Gladun,et al.  Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 2019 .

[26]  Elizabeth A. Murray,et al.  Pollinivory and the diversification dynamics of bees , 2018, Biology Letters.

[27]  Matthew W. Pennell,et al.  Rethinking phylogenetic comparative methods. , 2018, Systematic biology.

[28]  Bonnie B. Blaimer,et al.  Paleotropical Diversification Dominates the Evolution of the Hyperdiverse Ant Tribe Crematogastrini (Hymenoptera: Formicidae) , 2018, Insect Systematics and Diversity.

[29]  A. Forbes,et al.  Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order , 2018, bioRxiv.

[30]  J. Longino,et al.  The truncated bell: an enigmatic but pervasive elevational diversity pattern in Middle American ants , 2018, Ecography.

[31]  Alexey M. Kozlov,et al.  Phylogenomic analysis of Apoidea sheds new light on the sister group of bees , 2018, BMC evolutionary biology.

[32]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[33]  R. Lanfear,et al.  Estimating Improved Partitioning Schemes for Ultraconserved Elements , 2018, Molecular biology and evolution.

[34]  K. Worley,et al.  Genomes of the Hymenoptera. , 2018, Current opinion in insect science.

[35]  D. Soltis,et al.  Phylogeny and Evolution of the Angiosperms: Revised and Updated Edition , 2018 .

[36]  J. Wiens,et al.  Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts , 2018, Evolution; international journal of organic evolution.

[37]  Peng Zhang,et al.  Evolutionary history of Coleoptera revealed by extensive sampling of genes and species , 2018, Nature Communications.

[38]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[39]  D. Rabosky Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Grey T. Gustafson,et al.  Ultraconserved elements show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of ‘Hydradephaga’ , 2017 .

[41]  B. Faircloth,et al.  Enriching the ant tree of life: enhanced UCE bait set for genome‐scale phylogenetics of ants and other Hymenoptera , 2017 .

[42]  M. Borowiec Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics , 2017, bioRxiv.

[43]  Alexey M. Kozlov,et al.  Evolutionary History of the Hymenoptera , 2017, Current Biology.

[44]  Seán G. Brady,et al.  Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees , 2017, Current Biology.

[45]  T. Reeder,et al.  Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification , 2017, Journal of evolutionary biology.

[46]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[47]  Bonnie B. Blaimer,et al.  Phylogenomics, biogeography and diversification of obligate mealybug-tending ants in the genus Acropyga. , 2016, Molecular phylogenetics and evolution.

[48]  Bonnie B. Blaimer,et al.  Sequence Capture and Phylogenetic Utility of Genomic Ultraconserved Elements Obtained from Pinned Insect Specimens , 2016, PloS one.

[49]  Sebastian Höhna,et al.  Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures , 2016, Proceedings of the National Academy of Sciences.

[50]  Brian C O'Meara,et al.  Detecting hidden diversification shifts in models of trait-dependent speciation and extinction , 2015, bioRxiv.

[51]  B. O’Meara,et al.  Past, future, and present of state-dependent models of diversification. , 2016, American journal of botany.

[52]  Marek L Borowiec,et al.  AMAS: a fast tool for alignment manipulation and computing of summary statistics , 2016, PeerJ.

[53]  D. Rabosky Challenges in the estimation of extinction from molecular phylogenies: A response to Beaulieu and O'Meara , 2016, Evolution; international journal of organic evolution.

[54]  F. M. Carpenter THE GEOLOGICAL HISTORY AND EVOLUTION OF INSECTS , 2016 .

[55]  Brant C. Faircloth,et al.  PHYLUCE is a software package for the analysis of conserved genomic loci , 2015, bioRxiv.

[56]  Brian D. Farrell,et al.  The beetle tree of life reveals that Coleoptera survived end‐Permian mass extinction to diversify during the Cretaceous terrestrial revolution , 2015 .

[57]  J. Wiens,et al.  Herbivory increases diversification across insect clades , 2015, Nature Communications.

[58]  M. Donoghue,et al.  Confluence, synnovation, and depauperons in plant diversification. , 2015, The New phytologist.

[59]  H. Linder,et al.  On the complexity of triggering evolutionary radiations. , 2015, The New phytologist.

[60]  D. Rabosky,et al.  Model inadequacy and mistaken inferences of trait-dependent speciation. , 2014, Systematic biology.

[61]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[62]  Seán G. Brady,et al.  Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera , 2014, Molecular ecology resources.

[63]  R. FitzJohn,et al.  The unsolved challenge to phylogenetic correlation tests for categorical characters. , 2015, Systematic biology.

[64]  Thomas K. F. Wong,et al.  Phylogenomics resolves the timing and pattern of insect evolution , 2014, Science.

[65]  Y. Isaka,et al.  Was species diversification in Tenthredinoidea (Hymenoptera: Symphyta) related to the origin and diversification of angiosperms? , 2014, The Canadian Entomologist.

[66]  P. Mayhew,et al.  Fossil evidence for key innovations in the evolution of insect diversity , 2014, Proceedings of the Royal Society B: Biological Sciences.

[67]  M. Hofreiter,et al.  Phylogenetic Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation Driving Diversification in Insects , 2014, PloS one.

[68]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[69]  Daniel L. Rabosky,et al.  BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees , 2014 .

[70]  P. Christin,et al.  C4 Photosynthesis Promoted Species Diversification during the Miocene Grassland Expansion , 2014, PloS one.

[71]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[72]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[73]  C. G. Schrago,et al.  Assignment of Calibration Information to Deeper Phylogenetic Nodes is More Effective in Obtaining Precise and Accurate Divergence Time Estimates , 2014, Evolutionary bioinformatics online.

[74]  R. Lanfear,et al.  Selecting optimal partitioning schemes for phylogenomic datasets , 2014, BMC Evolutionary Biology.

[75]  F. Ronquist,et al.  The Hymenopteran Tree of Life: Evidence from Protein-Coding Genes and Objectively Aligned Ribosomal Data , 2013, PLoS ONE.

[76]  Stephen A. Smith,et al.  Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation , 2013, Nature Communications.

[77]  John T. Huber,et al.  A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods , 2013 .

[78]  S. Cardinal,et al.  Bees diversified in the age of eudicots , 2013, Proceedings of the Royal Society B: Biological Sciences.

[79]  N. P. Kristensen Phylogeny of endopterygote insects, the most successful lineage of living organisms , 2013 .

[80]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[81]  Tselil Schramm,et al.  An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps , 2012, Systematic biology.

[82]  B. Faircloth,et al.  Not All Sequence Tags Are Created Equal: Designing and Validating Sequence Identification Tags Robust to Indels , 2012, PloS one.

[83]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[84]  D. Reich,et al.  Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture , 2012, Genome research.

[85]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[86]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[87]  W. Wheeler,et al.  Phylogenetic relationships among superfamilies of Hymenoptera , 2012, Cladistics : the international journal of the Willi Hennig Society.

[88]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[89]  O. Seehausen,et al.  Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations , 2011 .

[90]  B. Misof,et al.  The taming of an impossible child: a standardized all-in approach to the phylogeny of Hymenoptera using public database sequences , 2011, BMC Biology.

[91]  James B. Munro,et al.  Evolution of the hymenopteran megaradiation. , 2011, Molecular phylogenetics and evolution.

[92]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[93]  Markus Friedrich,et al.  Episodic radiations in the fly tree of life , 2011, Proceedings of the National Academy of Sciences.

[94]  M. Engel,et al.  Fossil bees and their plant associates , 2011 .

[95]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[96]  S. Dötterl,et al.  The chemical ecology and evolution of bee-flower interactions: a review and perspectives' , 2010 .

[97]  L. Vilhelmsen,et al.  Beyond the wasp‐waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera) , 2010 .

[98]  D. Futuyma,et al.  Macroevolution and the biological diversity of plants and herbivores , 2009, Proceedings of the National Academy of Sciences.

[99]  Chad D. Brock,et al.  Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates , 2009, Proceedings of the National Academy of Sciences.

[100]  J. T. Huber Biodiversity of Hymenoptera , 2009 .

[101]  J. Heraty Parasitoid Biodiversity and Insect Pest Management , 2009 .

[102]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[103]  E. Pilgrim,et al.  Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies , 2008 .

[104]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[105]  P. Mayhew Why are there so many insect species? Perspectives from fossils and phylogenies , 2007, Biological reviews of the Cambridge Philosophical Society.

[106]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[107]  M. Strand,et al.  Evolution of developmental strategies in parasitic hymenoptera. , 2006, Annual review of entomology.

[108]  M. Donoghue Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny , 2005, Paleobiology.

[109]  A. Meyer,et al.  Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes , 2005, BMC Evolutionary Biology.

[110]  H. Godfray Parasitoids , 2004, Current Biology.

[111]  J. Whitfield Phylogenetic insights into the evolution of parasitism in hymenoptera. , 2003, Advances in parasitology.

[112]  G. Bush,et al.  Speciation in fig pollinators and parasites , 2002, Molecular ecology.

[113]  A. Austin,et al.  Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita – evolutionary transitions among parasitic wasps☆ , 2001 .

[114]  L. Vilhelmsen Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta) , 2001 .

[115]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[116]  L. Vilhelmsen Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeleto-musculature of the thoraco-abdominal boundary region in basal Hymenoptera (Insecta) , 2000, Zoomorphology.

[117]  Brian D. Farrell,et al.  "Inordinate Fondness" explained: why are there So many beetles? , 1998, Science.

[118]  J. Hunter Key innovations and the ecology of macroevolution. , 1998, Trends in ecology & evolution.

[119]  J. Nénon,et al.  STRUCTURE, SENSORY EQUIPMENT, AND SECRETIONS OF THE OVIPOSITOR IN A GIANT SPECIES OF HYMENOPTERA: MEGARHYSSA ATRATA F. (ICHNEUMONIDAE, PIMPLINAE) , 1997, The Canadian Entomologist.

[120]  K. Strimmer,et al.  Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Edward L. Mockford,et al.  A New Species of Dicopomorpha (Hymenoptera: Mymaridae) with Diminutive, Apterous Males , 1997 .

[122]  S. Heard,et al.  Key evolutionary innovations and their ecological mechanisms , 1995 .

[123]  C. Mitter,et al.  Diversification of Carnivorous Parasitic Insects: Extraordinary Radiation or Specialized Dead End? , 1993, The American Naturalist.

[124]  R. Belshaw,et al.  Comparisons of dipteran, hymenopteran and coleopteran parasitoids: provisional phylogenetic explanations , 1993 .

[125]  R. Belshaw,et al.  Insect parasitoids an evolutionary overview , 1992 .

[126]  Brian D. Farrell,et al.  The Phylogenetic Study of Adaptive Zones: Has Phytophagy Promoted Insect Diversification? , 1988, The American Naturalist.

[127]  A. Rasnitsyn An Outline of Evolution of the Hymenopterous Insects (Order Vespida) , 1988 .

[128]  Yoshihiro Y. Yamada Charactiristics of the Oviposition of a Parasitoid, Chrysis shanghaiensis : Hymenoptera : Chrysididae , 1987 .

[129]  P. Callahan The evolution of insects , 1972 .

[130]  R. Oeser Vergleichend-morphologische Untersuchungen über den Ovipositor der Hymenopteren , 1961 .