The role of kinetic context in apparent biased agonism at GPCRs

[1]  Arthur Christopoulos,et al.  Biased Agonism at G Protein‐Coupled Receptors: The Promise and the Challenges—A Medicinal Chemistry Perspective , 2014, Medicinal research reviews.

[2]  M. Dowling,et al.  Investigating the molecular mechanisms through which FTY 720P causes persistent S 1 P 1 receptor internalisation 1 , 2014 .

[3]  L. Mahan,et al.  Correction to “The Kinetics of Competitive Radioligand Binding Predicted by the Law of Mass Action” , 2014, Molecular Pharmacology.

[4]  J. Violin,et al.  Erratum: Biased ligands at G protein-coupled receptors: promise and progress:[Trends in Pharmacological Sciences 35 (2014) 308-316] , 2014 .

[5]  J. Vilardaga ENDOSOMAL GENERATION OF cAMP in GPCR SIGNALING , 2014, Nature chemical biology.

[6]  J. Violin,et al.  Biased ligands at G-protein-coupled receptors: promise and progress. , 2014, Trends in pharmacological sciences.

[7]  Ralf C. Kling,et al.  Functionally selective dopamine D₂, D₃ receptor partial agonists. , 2014, Journal of medicinal chemistry.

[8]  O. Nosjean,et al.  Prolonged Calcitonin Receptor Signaling by Salmon, but Not Human Calcitonin, Reveals Ligand Bias , 2014, PloS one.

[9]  Arthur Christopoulos,et al.  Quantification of Ligand Bias for Clinically Relevant β2-Adrenergic Receptor Ligands: Implications for Drug Taxonomy , 2014, Molecular Pharmacology.

[10]  S. Durgam,et al.  An evaluation of the safety and efficacy of cariprazine in patients with acute exacerbation of schizophrenia: A phase II, randomized clinical trial , 2014, Schizophrenia Research.

[11]  I. Gaidarov,et al.  Kinetics of 5-HT2B Receptor Signaling: Profound Agonist-Dependent Effects on Signaling Onset and Duration , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[12]  A. Christopoulos,et al.  A structure-activity analysis of biased agonism at the dopamine D2 receptor. , 2013, Journal of medicinal chemistry.

[13]  J. Violin,et al.  Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl})amine (TRV130), for the treatment of acute severe pain. , 2013, Journal of medicinal chemistry.

[14]  John Saunders,et al.  Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists. , 2013, Journal of medicinal chemistry.

[15]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[16]  A Multiplexed Fluorescent Calcium and NFAT Reporter Gene Assay to Identify GPCR Agonists , 2013, Current chemical genomics and translational medicine.

[17]  Jonathan R. Tomshine,et al.  Conformational biosensors reveal GPCR signalling from endosomes , 2013, Nature.

[18]  Arthur Christopoulos,et al.  Signalling bias in new drug discovery: detection, quantification and therapeutic impact , 2012, Nature Reviews Drug Discovery.

[19]  R. Leurs,et al.  Analysis of Multiple Histamine H4 Receptor Compound Classes Uncovers Gαi Protein- and β-Arrestin2-Biased Ligands , 2012, Molecular Pharmacology.

[20]  J. L. Hansen,et al.  Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. , 2012, Nature chemical biology.

[21]  A. IJzerman,et al.  Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time , 2012, British journal of pharmacology.

[22]  L. Carboni,et al.  Slow dissociation of partial agonists from the D₂ receptor is linked to reduced prolactin release. , 2012, The international journal of neuropsychopharmacology.

[23]  Christopher G. Tate,et al.  Crystal Structures of a Stabilized β1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol , 2012, Structure.

[24]  Eric Trinquet,et al.  Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[25]  Arthur Christopoulos,et al.  A simple method for quantifying functional selectivity and agonist bias. , 2012, ACS chemical neuroscience.

[26]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[27]  J. Dorn,et al.  Impedance Responses Reveal β2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles , 2012, PloS one.

[28]  Simon C. Potter,et al.  A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans , 2012, PLoS ONE.

[29]  Maria F. Sassano,et al.  Discovery of β-Arrestin–Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy , 2011, Proceedings of the National Academy of Sciences.

[30]  Kunhong Xiao,et al.  Multiple ligand-specific conformations of the β2-adrenergic receptor. , 2011, Nature chemical biology.

[31]  Sudarshan Rajagopal,et al.  Quantifying Ligand Bias at Seven-Transmembrane Receptors , 2011, Molecular Pharmacology.

[32]  O. Rascol,et al.  Pardoprunox in early Parkinson's disease: Results from 2 large, randomized double‐blind trials , 2011, Movement disorders : official journal of the Movement Disorder Society.

[33]  R. Lefkowitz,et al.  Therapeutic potential of β-arrestin- and G protein-biased agonists. , 2011, Trends in molecular medicine.

[34]  P. Gmeiner,et al.  Histidine 6.55 Is a Major Determinant of Ligand-Biased Signaling in Dopamine D2L Receptor , 2011, Molecular Pharmacology.

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  S. Charlton,et al.  Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays , 2010, British journal of pharmacology.

[37]  S. Charlton,et al.  μ-Opioid Receptors: Correlation of Agonist Efficacy for Signalling with Ability to Activate Internalization , 2010, Molecular Pharmacology.

[38]  P. Molinari,et al.  Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions* , 2010, The Journal of Biological Chemistry.

[39]  G. Cottrell,et al.  Endosomes: A legitimate platform for the signaling train , 2009, Proceedings of the National Academy of Sciences.

[40]  M. Dowling,et al.  Exploring the Mechanism of Agonist Efficacy: A Relationship between Efficacy and Agonist Dissociation Rate at the Muscarinic M3 Receptor , 2009, Molecular Pharmacology.

[41]  Bin Wang,et al.  Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. , 2009, Nature chemical biology.

[42]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[43]  R. Gainetdinov,et al.  Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics , 2008, Proceedings of the National Academy of Sciences.

[44]  S. Kapur,et al.  Emerging drugs for schizophrenia , 2008, Expert opinion on emerging drugs.

[45]  R. Copeland,et al.  Residence time of receptor-ligand complexes and its effect on biological function. , 2008, Biochemistry.

[46]  Robert J. Lefkowitz,et al.  β-Arrestin-biased Agonism at the β2-Adrenergic Receptor* , 2008, Journal of Biological Chemistry.

[47]  J. Violin,et al.  beta-arrestin-biased agonism at the beta2-adrenergic receptor. , 2008, The Journal of biological chemistry.

[48]  Robert J. Lefkowitz,et al.  A unique mechanism of β-blocker action: Carvedilol stimulates β-arrestin signaling , 2007, Proceedings of the National Academy of Sciences.

[49]  F. Ehlert,et al.  Estimation of Agonist Activity at G Protein-Coupled Receptors: Analysis of M2 Muscarinic Receptor Signaling through Gi/o,Gs, and G15 , 2007, Journal of Pharmacology and Experimental Therapeutics.

[50]  S. Rees,et al.  Protean Agonism at the Dopamine D2 Receptor: (S)-3-(3-Hydroxyphenyl)-N-propylpiperidine Is an Agonist for Activation of Go1 but an Antagonist/Inverse Agonist for Gi1,Gi2, and Gi3 , 2007, Molecular Pharmacology.

[51]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[52]  J. Violin,et al.  A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Mailman,et al.  Aripiprazole has Functionally Selective Actions at Dopamine D2 Receptor-Mediated Signaling Pathways , 2007, Neuropsychopharmacology.

[54]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[55]  M. Bouvier,et al.  Distinct Signaling Profiles of β1 and β2 Adrenergic Receptor Ligands toward Adenylyl Cyclase and Mitogen-Activated Protein Kinase Reveals the Pluridimensionality of Efficacy , 2006, Molecular Pharmacology.

[56]  Olivier Lichtarge,et al.  β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor* , 2006, Journal of Biological Chemistry.

[57]  Olivier Lichtarge,et al.  beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. , 2006, The Journal of biological chemistry.

[58]  R. Langer,et al.  Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis , 2005, The journal of gene medicine.

[59]  R. Lefkowitz,et al.  Differential Kinetic and Spatial Patterns of β-Arrestin and G Protein-mediated ERK Activation by the Angiotensin II Receptor* , 2004, Journal of Biological Chemistry.

[60]  S. Nickolls,et al.  Functional coupling of the human dopamine D2 receptor with Gαi1, Gαi2, Gαi3 and Gαo G proteins: evidence for agonist regulation of G protein selectivity , 2003 .

[61]  S. Nickolls,et al.  Functional coupling of the human dopamine D2 receptor with G alpha i1, G alpha i2, G alpha i3 and G alpha o G proteins: evidence for agonist regulation of G protein selectivity. , 2003, British journal of pharmacology.

[62]  C. Tamminga,et al.  Antipsychotic Properties of the Partial Dopamine Agonist (−)-3-(3-Hydroxyphenyl)-N-n-Propylpiperidine (Preclamol) in Schizophrenia , 1998, Biological Psychiatry.

[63]  Abraham Nudelman,et al.  NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. , 1997, The Journal of organic chemistry.

[64]  C. Marsden,et al.  The thermodynamics of agonist and antagonist binding to dopamine D-2 receptors. , 1986, Molecular pharmacology.

[65]  J. Black,et al.  Operational models of pharmacological agonism , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[66]  D. Sibley,et al.  Dopamine receptor binding on intact cells. Absence of a high-affinity agonist-receptor binding state. , 1983, Molecular Pharmacology.

[67]  D. Mackay A Critical Survey of Receptor Theories of Drug Action , 1977 .

[68]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[69]  A. Hill The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients , 1909, The Journal of physiology.