Impact of the gate-stack change from 40nm node SiON to 28nm High-K Metal Gate on the Hot-Carrier and Bias Temperature damage

High-K Metal-Gate 28nm node (C28) with equivalent gate-oxide thickness EOT= 1.35nm has been compared to low power 40nm CMOS node (1.7nm) on silicon bulk. Hot-Carrier damage in C28 originates from the same permanent ΔNIT mechanism under current driven Multiple Particle (MP) interactions, relative to the SiON interface layer while border to bulk oxide traps make the larger difference between NMOS and PMOS transistors. This has been obtained by their respective temperature activation and AC response behaviors at Room Temperature and High Temperature due to the distinct proportion of accessible shallow/deep defects in the HK-MG structures.

[1]  Blair R. Tuttle,et al.  Energetics and diffusion of hydrogen in SiO 2 , 2000 .

[2]  G. Ribes,et al.  New perspectives on NBTI in advanced technologies: modelling & characterization , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[3]  James H. Stathis,et al.  Atomic hydrogen-induced degradation of thin SiO2 gate oxides , 1995 .

[4]  Takahiro Yamasaki,et al.  Nano-scale simulation for advanced gate dielectrics , 2003 .

[5]  Giuseppe La Rosa,et al.  Channel hot carrier effects in n-MOSFET devices of advanced submicron CMOS technologies , 2007, Microelectron. Reliab..

[6]  W.L. Chang,et al.  Role of interface layer in stress-induced leakage current in high-k/metal-gate dielectric stacks , 2010, 2010 IEEE International Reliability Physics Symposium.

[7]  K. Takeuchi,et al.  Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps , 2010, 2010 International Electron Devices Meeting.

[8]  G. Ghibaudo,et al.  MVHR (multi-vibrational hydrogen release): consistency with bias temperature instability and dielectrics breakdown [MOS devices] , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[9]  Gijs Bosman,et al.  Model and analysis of gate leakage current in ultrathin nitrided oxide MOSFETs , 2002 .

[10]  V. Huard,et al.  Off state incorporation into the 3 energy mode device lifetime modeling for advanced 40nm CMOS node , 2010, 2010 IEEE International Reliability Physics Symposium.

[11]  V. Huard,et al.  Hot-Carrier acceleration factors for low power management in DC-AC stressed 40nm NMOS node at high temperature , 2009, 2009 IEEE International Reliability Physics Symposium.

[12]  Chenming Hu,et al.  Hot-electron-induced MOSFET degradation—Model, monitor, and improvement , 1985, IEEE Transactions on Electron Devices.

[13]  Chenming Hu,et al.  Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric , 2000, IEEE Electron Device Letters.

[14]  Karl Hess,et al.  Theory of channel hot-carrier degradation in MOSFETs , 1999 .

[15]  A. Krishnan,et al.  Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability , 2007, IEEE Transactions on Device and Materials Reliability.

[16]  X. Garros,et al.  Impact of TiN Metal gate on NBTI assessed by interface states and fast transient effect characterization , 2007, 2007 IEEE International Electron Devices Meeting.

[17]  Andreas Kerber,et al.  Stress-induced leakage current and defect generation in nFETs with HfO2/TiN gate stacks during positive-bias temperature stress , 2009, 2009 IEEE International Reliability Physics Symposium.

[18]  Chenming Hu,et al.  Hot-Electron-Induced MOSFET Degradation - Model, Monitor, and Improvement , 1985, IEEE Journal of Solid-State Circuits.

[19]  Chih-Yu Hsu,et al.  Evidence for a Very Small Tunneling Effective Mass (0.03 $m_{0}$) in MOSFET High-$k$ (HfSiON) Gate Dielectrics , 2012, IEEE Electron Device Letters.

[20]  S. De Gendt,et al.  Postdeposition-Anneal Effect on Negative Bias Temperature Instability in HfSiON Gate Stacks , 2007, IEEE Transactions on Device and Materials Reliability.

[21]  Dim-Lee Kwong,et al.  Investigation of hole-tunneling current through ultrathin oxynitride/oxide stack gate dielectrics in p-MOSFETs , 2002 .

[22]  E. Cartier,et al.  Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-scaling , 2011, 2011 International Electron Devices Meeting.

[23]  Vincent Huard,et al.  From defects creation to circuit reliability - A bottom-up approach (invited) , 2011 .

[24]  Norman H. Tolk,et al.  Vibrational lifetimes of hydrogen in silicon , 2003 .

[25]  T. Ando,et al.  On the Electron and Hole Tunneling in a $ \hbox{HfO}_{2}$ Gate Stack With Extreme Interfacial-Layer Scaling , 2011, IEEE Electron Device Letters.

[26]  On the recoverable and permanent components of Hot Carrier and NBTI in Si pMOSFETs and their implications in Si0.45Ge0.55 pMOSFETs , 2011, 2011 International Reliability Physics Symposium.

[27]  J.T. Ryan,et al.  Interfacial layer defects and instabilities in HfO2 MOS structures , 2008, 2008 IEEE International Reliability Physics Symposium.

[28]  R. Degraeve,et al.  Insight Into N/PBTI Mechanisms in Sub-1-nm-EOT Devices , 2012, IEEE Transactions on Electron Devices.

[29]  Chih-Yu Hsu,et al.  A Method of Extracting Metal-Gate High-$k$ Material Parameters Featuring Electron Gate Tunneling Current Transition , 2011, IEEE Transactions on Electron Devices.

[30]  Karl Hess,et al.  Magnitude of the threshold energy for hot electron damage in metal–oxide–semiconductor field effect transistors by hydrogen desorption , 1999 .

[31]  M. Denais,et al.  NBTI degradation: From physical mechanisms to modelling , 2006, Microelectron. Reliab..

[32]  Esteve Amat,et al.  Gate Voltage Influence on the Channel Hot-Carrier Degradation of High-$k$ -Based Devices , 2011, IEEE Transactions on Device and Materials Reliability.

[33]  V. Huard,et al.  Hot-carrier to cold-carrier device lifetime modeling with temperature for low power 40nm Si-bulk NMOS and PMOS FETs , 2011, 2011 International Electron Devices Meeting.

[34]  Van de Walle Cg,et al.  Structure, energetics, and dissociation of Si-H bonds at dangling bonds in silicon. , 1994 .

[35]  Blair R. Tuttle,et al.  Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon , 1999 .

[36]  Van de Walle CG,et al.  Structure, energetics, and dissociation of Si-H bonds at dangling bonds in silicon. , 1994, Physical review. B, Condensed matter.

[37]  A. Haggag,et al.  High-performance chip reliability from short-time-tests-statistical models for optical interconnect and HCI/TDDB/NBTI deep-submicron transistor failures , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[38]  T. Ma,et al.  Tunneling leakage current in oxynitride: dependence on oxygen/nitrogen content , 1998, IEEE Electron Device Letters.

[39]  X. Federspiel,et al.  New Hot Carrier degradation modeling reconsidering the role of EES in ultra short N-channel MOSFETs , 2013, 2013 IEEE International Reliability Physics Symposium (IRPS).

[40]  T. Seideman,et al.  Current-Driven Phenomena in Nanoelectronics , 2010 .

[41]  M. Denais,et al.  Impacts of the recovery phenomena on the worst-case of damage in DC/AC stressed ultra-thin NO gate-oxide MOSFETs , 2005, Microelectron. Reliab..

[42]  Tibor Grasser,et al.  Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities , 2012, Microelectron. Reliab..

[43]  Fernando Guarin,et al.  Role of E-E scattering in the enhancement of channel hot carrier degradation of deep-submicron NMOSFETs at high V/sub GS/ conditions , 2001 .

[44]  A. Zaka,et al.  Modeling Stressed MOS Oxides Using a Multiphonon-Assisted Quantum Approach—Part II: Transient Effects , 2012, IEEE Transactions on Electron Devices.

[45]  Eric M. Vogel,et al.  Modeled tunnel currents for high dielectric constant dielectrics , 1998 .

[46]  S. Lai,et al.  Two‐carrier nature of interface‐state generation in hole trapping and radiation damage , 1981 .

[47]  F. Heiman,et al.  The effects of oxide traps on the MOS capacitance , 1965 .

[48]  Douglas A. Buchanan On the generation of interface states from electron‐hole recombination in metal‐oxide‐semiconductor capacitors , 1994 .

[49]  Stefan De Gendt,et al.  Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks , 2002 .

[50]  C. Hu,et al.  Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling , 2001 .

[51]  G. Reimbold,et al.  Experimental Investigation of Hole Transport in Strained $\hbox{Si}_{1 - x}\hbox{Ge}_{x}/\hbox{SOI}$ pMOSFETs: Part II—Mobility and High-Field Transport in Nanoscaled PMOS , 2012, IEEE Transactions on Electron Devices.

[52]  A. Bravaix,et al.  The Energy-Driven Hot-Carrier Degradation Modes of nMOSFETs , 2007, IEEE Transactions on Device and Materials Reliability.

[53]  M. Denais,et al.  A thorough investigation of MOSFETs NBTI degradation , 2005, Microelectron. Reliab..

[54]  Geert Hellings,et al.  A Fast and Accurate Method to Study the Impact of Interface Traps on Germanium MOS Performance , 2011, IEEE Transactions on Electron Devices.

[55]  V. Huard,et al.  Design-in-Reliability Approach for NBTI and Hot-Carrier Degradations in Advanced Nodes , 2007, IEEE Transactions on Device and Materials Reliability.

[56]  Vincent Huard,et al.  General framework about defect creation at the Si∕SiO2 interface , 2009 .

[57]  J. Ushio,et al.  Interface structures generated by negative-bias temperature instability in Si/SiO2 and Si/SiOxNy interfaces , 2002 .

[58]  李幼升,et al.  Ph , 1989 .

[59]  Didier Goguenheim,et al.  Hole injection enhanced hot-carrier degradation in PMOSFETs used for systems on chip applications with 6.5-2 nm thick gate-oxides , 2004, Microelectron. Reliab..

[60]  Guido Groeseneken,et al.  Contribution of fast and slow states to Negative Bias Temperature Instabilities in HfxSi(1-x )ON/TaN based pMOSFETs , 2005 .