Integration of fiber-coupled high-Q SiNx microdisks with atom chips

Micron scale silicon nitride (SiNx) microdisk optical resonators are demonstrated with Q=3.6×10^6 and an effective mode volume of 15(lambda/n)^3 at near-visible wavelengths. A hydrofluoric acid wet etch provides sensitive tuning of the microdisk resonances, and robust mounting of a fiber taper provides efficient fiber optic coupling to the microdisks while allowing unfettered optical access for laser cooling and trapping of atoms. Measurements indicate that cesium adsorption on the SiNx surfaces significantly red detunes the microdisk resonances. Parallel integration of multiple (10) microdisks with a single fiber taper is also demonstrated.

[1]  R. Palmer,et al.  Models of hierarchically constrained dynamics for glassy relaxation , 1984 .

[2]  G. Parsons,et al.  Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition , 1991 .

[3]  T. Inukai,et al.  Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition , 1994 .

[4]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[5]  J. Günster,et al.  Cs adsorption on oxide films (Al2O3, MgO, SiO2) , 1997 .

[6]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[7]  E. Cornell,et al.  Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. , 1998, Applied optics.

[8]  Jeremy J. Baumberg,et al.  Visible photonic band gap engineering in silicon nitride waveguides , 2000 .

[9]  J. Gilman,et al.  Nanotechnology , 2001 .

[10]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[11]  Jakob Reichel,et al.  Microchip traps and Bose–Einstein condensation , 2002 .

[12]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[13]  Benjamin Lev Fabrication of micro-magnetic traps for cold neutral atoms , 2003, Quantum Inf. Comput..

[14]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[15]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[16]  I. Bar-Joseph,et al.  Atom chips: Fabrication and thermal properties , 2004 .

[17]  D. Gill,et al.  Very high-order microring resonator filters for WDM applications , 2004, IEEE Photonics Technology Letters.

[18]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[19]  Hideo Mabuchi,et al.  Feasibility of detecting single atoms using photonic bandgap cavities , 2004 .

[20]  Alexander Ksendzov,et al.  Integrated optics ring-resonator chemical sensor with polymer transduction layer , 2004 .

[21]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[22]  Peter Horak,et al.  Single-atom detection using whispering-gallery modes of microdisk resonators (10 pages) , 2004 .

[23]  T. Barwicz,et al.  Fabrication and analysis of add-drop filters based on microring resonators in SiN , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[24]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[25]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[26]  Jörg Schmiedmayer,et al.  Detecting magnetically guided atoms with an optical cavity. , 2005, Optics Letters.