The Batyrev-Manin conjecture for DM stacks

We define a new height function on rational points of a DM (Deligne-Mumford) stack over a number field. This generalizes a generalized discriminant of Ellenberg-Venkatesh, the height function recently introduced by Ellenberg-Satriano-Zureick-Brown (as far as DM stacks over number fields are concerned), and the quasi-toric height function on weighted projective stacks by Darda. Generalizing the Manin conjecture and the more general Batyrev-Manin conjecture, we formulate a few conjectures on the asymptotic behavior of the number of rational points of a DM stack with bounded height. To formulate the Batyrev-Manin conjecture for DM stacks, we introduce the orbifold versions of the so-called $a$- and $b$-invariants. When applied to the classifying stack of a finite group, these conjectures specialize to the Malle conjecture, except that we remove certain thin subsets from counting. More precisely, we remove breaking thin subsets, which have been studied in the case of varieties by people including Hassett, Tschinkel, Tanimoto, Lehmann and Sengupta, and can be generalized to DM stack thanks to our generalization of $a$- and $b$-invariants. The breaking thin subset enables us to reinterpret Kl\"uners' counterexample to the Malle conjecture.

[1]  Takehiko Yasuda,et al.  Torsors for finite group schemes of bounded height , 2022, Journal of the London Mathematical Society.

[2]  Aaron Landesman Stacky heights on elliptic curves in characteristic 3 , 2021, 2107.08318.

[3]  J. Ellenberg,et al.  Heights on stacks and a generalized Batyrev–Manin–Malle conjecture , 2021, Forum of Mathematics, Sigma.

[4]  Ratko Darda,et al.  Rational points of bounded height on weighted projective stacks , 2021, 2106.10120.

[5]  F. Thorne,et al.  Upper bounds on number fields of given degree and bounded discriminant , 2020, Duke Mathematical Journal.

[6]  Takehiko Yasuda Motivic integration over wild Deligne–Mumford stacks , 2019, Algebraic Geometry.

[7]  Brian Lehmann,et al.  Geometric consistency of Manin's conjecture , 2018, Compositio Mathematica.

[8]  Brian Lehmann,et al.  Geometric Manin’s conjecture and rational curves , 2017, Compositio Mathematica.

[9]  M. Emsalem Twisting by a Torsor , 2015, 1508.02903.

[10]  Cécile Le Rudulier Points algébriques de hauteur bornée , 2014 .

[11]  Y. Tschinkel,et al.  Balanced line bundles on Fano varieties , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[12]  Jeanne Fasel,et al.  Groupes Classiques , 2014, 1401.1992.

[13]  M. Wood,et al.  Mass formulas for local Galois representations and quotient singularities I: a comparison of counting functions , 2013, 1309.2879.

[14]  Y. Tschinkel,et al.  Balanced line bundles and equivariant compactifications of homogeneous spaces , 2013, 1307.5467.

[15]  Sandor J. Kovacs,et al.  Singularities of the minimal model program , 2013 .

[16]  R. Dietmann ON THE DISTRIBUTION OF GALOIS GROUPS , 2010, 1010.5341.

[17]  M. Wood On the probabilities of local behaviors in abelian field extensions , 2008, Compositio Mathematica.

[18]  Seyfi Turkelli Connected Components of Hurwitz Schemes and Malle's Conjecture , 2008, 0809.0951.

[19]  A. Adem,et al.  Orbifolds and Stringy Topology , 2007 .

[20]  Étienne Mann ORBIFOLD QUANTUM COHOMOLOGY OF WEIGHTED PROJECTIVE SPACES , 2006, math/0610965.

[21]  A. Corti,et al.  The quantum orbifold cohomology of weighted projective spaces , 2006, math/0608481.

[22]  Martin Olsson,et al.  Hom-stacks and restriction of scalars , 2006 .

[23]  D. Abramovich,et al.  Gromov-Witten theory of Deligne-Mumford stacks , 2006, math/0603151.

[24]  Nathalie Jacobs Springer , 2006 .

[25]  J. Klueners A counter example to Malle's conjecture on the asymptotics of discriminants , 2004, math/0411486.

[26]  S. Boucksom,et al.  The pseudo-effective cone of a compact K\ , 2004, math/0405285.

[27]  Takehiko Yasuda Motivic integration over Deligne–Mumford stacks , 2003, math/0312115.

[28]  D. Abramovich,et al.  Algebraic orbifold quantum products , 2001, math/0112004.

[29]  Takehiko Yasuda Twisted jets, motivic measures and orbifold cohomology , 2001, Compositio Mathematica.

[30]  Laurent Moret-Bailly Problèmes de Skolem sur les champs algébriques , 2001, Compositio Mathematica.

[31]  D. Abramovich,et al.  Compactifying the space of stable maps , 1999, math/9908167.

[32]  Y. Tschinkel,et al.  Tamagawa numbers of polarized algebraic varieties , 1997, Astérisque.

[33]  Y. Tschinkel,et al.  Height zeta functions of toric varieties , 1996, alg-geom/9606003.

[34]  Emmanuel Peyre,et al.  HAUTEURS ET MESURES DE TAMAGAWA SUR LES VARIÉTÉS DE FANO , 1995 .

[35]  W. Schmidt Northcott's theorem on heights I. A general estimate , 1993 .

[36]  V. V. Batyrev,et al.  Sur le nombre des points rationnels de hauteur borné des variétés algébriques , 1990 .

[37]  J. Franke,et al.  Rational points of bounded height on Fano varieties , 1989 .

[38]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[39]  C. Birkar,et al.  Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday , 2017 .

[40]  Weiping Zhang,et al.  Advances in Mathematics , 2015 .

[41]  石井 志保子 Introduction to singularities , 2014 .

[42]  Akshay Venkatesh,et al.  Counting extensions of function fields with bounded discriminant and specified Galois group , 2005 .

[43]  Emmanuel Peyre Points de hauteur bornée, topologie adélique et mesures de Tamagawa , 2003 .

[44]  W. Schmidt Northcott's theorem on heights II. The quadratic case , 1995 .

[45]  S. Schanuel Heights in number fields , 1979 .

[46]  A. Grothendieck Étude locale des schémas et des morphismes de schémas , 1964 .

[47]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[48]  L. Schmetterer,et al.  Journal für die reine und angewandte Mathematik , 1889 .

[49]  American Journal of Mathematics , 1886, Nature.

[50]  Numérisation de documents anciens mathématiques Bulletin de la Société Mathématique de France , 1873 .