Global Interactions in Random Field Models: A Potential Function Ensuring Connectedness

Markov random field (MRF) models, including conditional random field models, are popular in computer vision. However, in order to be computationally tractable, they are limited to incorporating only local interactions and cannot model global properties such as connectedness, which is a potentially useful high-level prior for object segmentation. In this work, we overcome this limitation by deriving a potential function that forces the output labeling to be connected and that can naturally be used in the framework of recent maximum a posteriori (MAP)-MRF linear program (LP) relaxations. Using techniques from polyhedral combinatorics, we show that a provably strong approximation to the MAP solution of the resulting MRF can still be found efficiently by solving a sequence of max-flow problems. The efficiency of the inference procedure also allows us to learn the parameters of an MRF with global connectivity potentials by means of a cutting plane algorithm. We experimentally evaluate our algorithm on both synthetic data and on the challenging image segmentation task of the PASCAL Visual Object Classes 2008 data set. We show that in both cases the addition of a connectedness prior significantly reduces the segmentation error.

[1]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Egon Balas,et al.  Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization , 2005, Ann. Oper. Res..

[3]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[4]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Dimitris Samaras,et al.  Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images , 2008, Comput. Vis. Image Underst..

[6]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[8]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[9]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Yair Weiss,et al.  MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies , 2007, UAI.

[11]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Vladimir Kolmogorov,et al.  An Analysis of Convex Relaxations for MAP Estimation , 2007, NIPS.

[13]  Amir Globerson,et al.  Convergent message passing algorithms - a unifying view , 2009, UAI.

[14]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[15]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Sebastian Nowozin,et al.  Global connectivity potentials for random field models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Greg Mori,et al.  Guiding model search using segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[21]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[22]  Thorsten Joachims,et al.  Cutting-plane training of structural SVMs , 2009, Machine Learning.

[23]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Vladimir Kolmogorov,et al.  On partial optimality in multi-label MRFs , 2008, ICML '08.

[25]  Pushmeet Kohli,et al.  Minimizing sparse higher order energy functions of discrete variables , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[28]  Daniel P. Huttenlocher,et al.  Learning for stereo vision using the structured support vector machine , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Tommi S. Jaakkola,et al.  New Outer Bounds on the Marginal Polytope , 2007, NIPS.

[30]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[31]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[33]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[34]  Stan Z. Li,et al.  Markov Random Field Models in Computer Vision , 1994, ECCV.

[35]  Chih-Jen Lin,et al.  A dual coordinate descent method for large-scale linear SVM , 2008, ICML '08.

[36]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[38]  Ben Taskar,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[39]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[40]  G. Nemhauser,et al.  Integer Programming , 2020 .

[41]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[42]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[43]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[44]  Philip H. S. Torr,et al.  Efficiently solving convex relaxations for MAP estimation , 2008, ICML '08.

[45]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Nikos Komodakis,et al.  Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles , 2008, ECCV.

[47]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[48]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[49]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[50]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[51]  Tomás Werner,et al.  High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Binoy Pinto,et al.  Speeded Up Robust Features , 2011 .