An Intrinsic Behavioural Approach to the Gap Metric

An intrinsic trajectory level approach without any recourse to an algebraic structure of a representation is utilized to develop a behavioural approach to robust stability. In particular it is shown how the controllable behaviour can be constructed at the trajectory level via Zorn's Lemma, and this is utilized to study the controllable-autonomous decomposition. The gap distance is generalised to the behavioural setting via a trajectory level definition; and a basic robust stability theorem is established for linear shift invariant behaviours.

[1]  Paula Rocha,et al.  Trajectory Control and Interconnection of 1D and nD Systems , 2001, SIAM J. Control. Optim..

[2]  Pertti M. Mäkilä,et al.  On three puzzles in robust control , 2000, IEEE Trans. Autom. Control..

[3]  Eric Rogers,et al.  Controllable and Autonomous nD Linear Systems , 1999, Multidimens. Syst. Signal Process..

[4]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[6]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[7]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[8]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[9]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: part II , 2002, IEEE Trans. Autom. Control..

[10]  Amol Sasane Distance between behaviours , 2003 .

[11]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[12]  Heide Gluesing-Luerssen,et al.  Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach , 2001 .

[13]  Tryphon T. Georgiou,et al.  Intrinsic difficulties in using the doubly-infinite time axis for input-output control theory , 1995, IEEE Trans. Autom. Control..

[14]  T. Georgiou,et al.  On the computation of the gap metric , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[15]  Eva Zerz,et al.  Notes on the definition of behavioural controllability , 1999 .

[16]  Tryphon T. Georgiou,et al.  On the computation of the gap metric , 1988 .

[17]  Jonathan R. Partington,et al.  Graphs, closability, and causality of linear time-invariant discrete-time systems , 2000 .

[18]  T. Georgiou,et al.  Robustness analysis of nonlinear feedback systems: an input-output approach , 1997, IEEE Trans. Autom. Control..