Arbuscular mycorrhizal symbiosis modulates the apocarotenoid biosynthetic pathway in saffron

[1]  M. Morgante,et al.  The mycorrhizal root-shoot axis elicits Coffea arabica growth under low phosphate conditions. , 2023, The New phytologist.

[2]  V. Scariot,et al.  The natural colorants of the Crocus sativus L. flower , 2023, Acta Horticulturae.

[3]  C. Macdonald,et al.  Application of microbial inoculants significantly  enhances crop productivity: A meta‐analysis of studies from 2010 to 2020 , 2022, Journal of Sustainable Agriculture and Environment.

[4]  C. Pedersen,et al.  Monochromatic blue light enhances crocin and picrocrocin content by upregulating the expression of underlying biosynthetic pathway genes in saffron (Crocus sativus L.) , 2022, Frontiers in Horticulture.

[5]  B. Usadel,et al.  Ancient Artworks and Crocus Genetics Both Support Saffron’s Origin in Early Greece , 2022, Frontiers in Plant Science.

[6]  C. Vannini,et al.  Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium , 2021, The Plant journal : for cell and molecular biology.

[7]  L. Lanfranco,et al.  The plant microbiota: composition, functions, and engineering. , 2021, Current opinion in biotechnology.

[8]  L. Gómez-Gómez,et al.  A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.) , 2021, International journal of molecular sciences.

[9]  Byoung Ryong Jeong,et al.  Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant , 2021, Frontiers in Plant Science.

[10]  R. Balestrini,et al.  Impact of drying temperature on tissue anatomy and cellular ultrastructure of different aromatic plant leaves , 2021, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology.

[11]  V. Scariot,et al.  Sustainable Processing of Floral Bio-Residues of Saffron (Crocus sativus L.) for Valuable Biorefinery Products , 2021, Plants.

[12]  N. Cicco,et al.  Saffron (Crocus sativus L.), the king of spices: An overview , 2020 .

[13]  V. Scariot,et al.  Crocus sativus L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds , 2020, Agronomy.

[14]  V. Scariot,et al.  Arbuscular mycorrhizal fungi association promotes corm multiplication in potted saffron (Crocus sativus L.) plants , 2020 .

[15]  Y. Rouphael,et al.  Editorial: Biostimulants in Agriculture , 2020, Frontiers in Plant Science.

[16]  M. Agnolucci,et al.  Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula , 2020 .

[17]  A. Fiore,et al.  UGT709G1: a novel UDP-glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). , 2019, The New phytologist.

[18]  S. Al‐Babili,et al.  Apocarotenoids: Old and New Mediators of the Arbuscular Mycorrhizal Symbiosis , 2019, Front. Plant Sci..

[19]  V. Scariot,et al.  Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation , 2019, Agronomy.

[20]  V. Scariot,et al.  Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds , 2018, Agronomy.

[21]  C. Gutjahr,et al.  Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. , 2018, The New phytologist.

[22]  P. Bonfante,et al.  Plant microbiota: from model plants to Mediterranean crops , 2018 .

[23]  V. Scariot,et al.  Arbuscular mycorrhizal fungi as natural biofertilizers: current role and potential for the horticulture industry , 2018 .

[24]  G. Alonso,et al.  Saffron: An Old Medicinal Plant and a Potential Novel Functional Food , 2017, Molecules.

[25]  Yongsheng Li,et al.  Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings , 2017, Front. Microbiol..

[26]  K. Ljung,et al.  Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula1[OPEN] , 2017, Plant Physiology.

[27]  G. Alonso,et al.  Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. , 2017, Food chemistry.

[28]  Nasheeman Ashraf,et al.  Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. , 2017, Molecular Genetics and Genomics.

[29]  J. M. Seguí-Simarro,et al.  Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma , 2017, International journal of molecular sciences.

[30]  Jens Timmer,et al.  Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites , 2016, Journal of experimental botany.

[31]  J. Stajich,et al.  A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data , 2016, Mycologia.

[32]  L. Abrankó,et al.  Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold. , 2016, Journal of agricultural and food chemistry.

[33]  Mukesh Jain,et al.  De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis , 2016, Scientific Reports.

[34]  R. Balestrini,et al.  Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes , 2016, Front. Microbiol..

[35]  Anil Kumar Singh,et al.  Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis , 2015, BMC Genomics.

[36]  S. Seyyedi,et al.  Relationship between nitrogen and phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization , 2015 .

[37]  R. Kapoor,et al.  Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels , 2015, Mycorrhiza.

[38]  A. Granell,et al.  New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus , 2014, Plant Molecular Biology.

[39]  Manuel Carmona,et al.  Determination of saffron quality by high-performance liquid chromatography. , 2014, Journal of agricultural and food chemistry.

[40]  K. Yoneyama,et al.  Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting , 2014, BMC Plant Biology.

[41]  Guohuai Li,et al.  Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. , 2011 .

[42]  K. Turnau,et al.  Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi , 2011, Mycorrhiza.

[43]  Sally E. Smith,et al.  Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. , 2011, Annual review of plant biology.

[44]  S. G. Nebauer,et al.  Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. , 2011, Tree physiology.

[45]  L. Gómez-Gómez,et al.  Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. , 2010, Genomics.

[46]  N. Mincheva,et al.  Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. , 2010, Journal of the science of food and agriculture.

[47]  R. Mendel,et al.  Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). , 2009, Current opinion in plant biology.

[48]  A. Granell,et al.  Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases from Crocus sativus Are Both Involved in β-Ionone Release* , 2008, Journal of Biological Chemistry.

[49]  G. Alonso,et al.  Kinetics of individual crocetin ester degradation in aqueous extracts of saffron (Crocus sativus L.) upon thermal treatment in the dark. , 2008, Journal of agricultural and food chemistry.

[50]  N. Tuteja Abscisic Acid and Abiotic Stress Signaling , 2007, Plant signaling & behavior.

[51]  A. Zalacain,et al.  Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. , 2006, Journal of agricultural and food chemistry.

[52]  A. Bago,et al.  Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. , 2005, The New phytologist.

[53]  E. Nambara,et al.  Abscisic acid biosynthesis and catabolism. , 2005, Annual review of plant biology.

[54]  W. Zipfel,et al.  Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi , 2002, Plant and Soil.

[55]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[56]  H. Himeno,et al.  Synthesis of Crocin, Picrocrocin and Safranal by Saffron Stigma-like Structures Proliferated in Vitro , 1987 .

[57]  V. Scariot,et al.  Beneficial microorganisms: a sustainable horticultural solution to improve the quality of saffron in hydroponics , 2023, Scientia Horticulturae.

[58]  Sanjeev Kumar,et al.  Arbuscular mycorrhizal fungi: Source of secondary metabolite production in medicinal plants , 2021 .

[59]  Subodh Kumar Maiti,et al.  Plant–soil interactions as a restoration tool , 2020 .

[60]  P. Christou,et al.  The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. , 2016, The New phytologist.

[61]  L. Gómez-Gómez,et al.  Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. , 2012, Journal of experimental botany.

[62]  G. F.,et al.  Saffron, an alternative crop for sustainable agricultural systems. A review , 2011, Agronomy for Sustainable Development.

[63]  J. Barea,et al.  Saprophytic Growth of Arbuscular Mycorrhizal Fungi , 1995 .

[64]  A. Trouvelot,et al.  Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une significantion fonctionnelle , 1986 .