Imaging of elves , halos and sprite initiation at 1 ms time resolution

Elves, halos and sprites were observed during August 1999 with a 1 ms high speed imager. The higher time resolution compared to conventional television cameras (17 or 20 ms) allowed excellent images of the three phenomena temporally separate from each other to be obtained. Analysis of images of elves and halos indicates that the causal lightning-generated electromagnetic pulse and quasi-electro static 6elds are homogeneous and any small-scale (sub-10 km) structure, if visible, is most likely due to a structured atmosphere. Observations of sprites initiated to the side of a halo, without a halo, and from beads left over from a previous sprite, respectively, all suggest sub-pixel (¡ 0:5 km) background structures in atmospheric pressure or composition as being the dominant factors in determining the sprite “seed” location, or site of sprite initiation. c © 2003 Elsevier Science Ltd. All rights reserved.

[1]  D. Revelle,et al.  Meteor Trails and Columniform Sprites , 2000 .

[2]  Mark A. Stanley,et al.  High speed video of initial sprite development , 1999 .

[3]  U. Inan,et al.  Telescopic imaging of sprites , 2000 .

[4]  R. Fernsler,et al.  Models of lightning-produced sprites and elves , 1996 .

[5]  Umran S. Inan,et al.  Mesosphere‐troposphere coupling due to sprites , 2001 .

[6]  Umran S. Inan,et al.  Rapid lateral expansion of optical luminosity in lightning‐induced ionospheric flashes referred to as ‘elves' , 1997 .

[7]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[8]  M. Taylor,et al.  Video and Photometric Observations of a Sprite in Coincidence with a Meteor-triggered Jet Event , 1999 .

[9]  H. Rowland Theories and simulations of elves, sprites and blue jets , 1998 .

[10]  N. Zabotin,et al.  Role of meteoric dust in sprite formation , 2001 .

[11]  C. Barrington-Leigh,et al.  Fast photometric imaging of high altitude optical flashes above thunderstorms , 2000 .

[12]  E. Williams,et al.  Sprites, ELF Transients, and Positive Ground Strokes , 1995, Science.

[13]  Mikhail N. Shneider,et al.  Long streamers in the upper atmosphere above thundercloud , 1998 .

[14]  M. McHarg,et al.  Altitude‐time development of sprites , 2002 .

[15]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[16]  Walter A. Lyons,et al.  Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems , 1996 .

[17]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[18]  D. Siskind,et al.  Atmospheric science across the stratopause , 2000 .

[19]  M. Uman,et al.  The Lightning Discharge , 1987 .

[20]  M. Rycroft,et al.  Non-uniform ionisation of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge , 2001 .

[21]  D. Sentman,et al.  Red sprites and blue jets: Thunderstorm‐excited optical emissions in the stratosphere, mesosphere, and ionosphere , 1995 .

[22]  Umran S. Inan,et al.  Fractal structure of sprites , 2000 .

[23]  Umran S. Inan,et al.  Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere , 1997 .

[24]  Umran S. Inan,et al.  Identification of sprites and elves with intensified video and broadband array photometry , 2001 .

[25]  G. M. Milikh,et al.  Red sprites: Lightning as a fractal antenna , 1997 .

[26]  T. Tsuda,et al.  Breaking of small‐scale gravity wave and transition to turbulence observed in OH airglow , 2001 .

[27]  Matthew J. Heavner,et al.  Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors , 2001 .