Identification, phylogenetic analysis, and genome mining of the tetracycline-resistant Bacillus thuringiensis strain m401 reveal its potential for biotechnological and biocontrol applications.

[1]  A. Lajis Biomanufacturing process for the production of bacteriocins from Bacillaceae family , 2020, Bioresources and Bioprocessing.

[2]  A. Alippi,et al.  Feasibility of using RFLP of PCR-amplified 16S rRNA gene(s) for rapid differentiation of isolates of aerobic spore-forming bacteria from honey. , 2019, Journal of microbiological methods.

[3]  M. Wiedmann,et al.  Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes , 2019, mBio.

[4]  A. Alippi,et al.  HiCrome Bacillus agar for presumptive identification of Bacillus and related species isolated from honey samples. , 2019, International journal of food microbiology.

[5]  U. Azizoglu Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt , 2019, Current Microbiology.

[6]  Shuai Wei,et al.  Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. , 2019, Microbial pathogenesis.

[7]  P. Balatti,et al.  Draft Genome Sequence of Bacillus thuringiensis Strain m401, Isolated from Honey in Argentina , 2018, Microbiology Resource Announcements.

[8]  J. Vederas,et al.  Insights into the draft genome sequence of bioactives-producing Bacillus thuringiensis DNG9 isolated from Algerian soil-oil slough , 2018, Standards in Genomic Sciences.

[9]  Ming Sun,et al.  Bacillus thuringiensis produces the lipopeptide thumolycin to antagonize microbes and nematodes. , 2018, Microbiological research.

[10]  L. Bartel,et al.  Bacillus and Brevibacillus strains as potential antagonists of Paenibacillus larvae and Ascosphaera apis , 2018, Journal of Apicultural Research.

[11]  L. E. Casados-Vázquez,et al.  Regulator ThnR and the ThnDE ABC transporter proteins confer autoimmunity to thurincin H in Bacillus thuringiensis , 2018, Antonie van Leeuwenhoek.

[12]  G. Braus,et al.  Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species , 2017, Front. Microbiol..

[13]  J. Minnaard,et al.  Partial characterization of bacteriocin‐like compounds from two strains of Bacillus cereus with biological activity against Paenibacillus larvae, the causal agent of American Foulbrood disease , 2016, Letters in applied microbiology.

[14]  S. Ding,et al.  Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China , 2016, Front. Microbiol..

[15]  Alexander Goesmann,et al.  EDGAR 2.0: an enhanced software platform for comparative gene content analyses , 2016, Nucleic Acids Res..

[16]  O. Kuipers,et al.  Bacteriocins of lactic acid bacteria: extending the family , 2016, Applied Microbiology and Biotechnology.

[17]  In-Cheol Yeo,et al.  Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. , 2015, Canadian journal of microbiology.

[18]  Colin Berry,et al.  Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity , 2014, Toxins.

[19]  I. León,et al.  Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. , 2014, International microbiology : the official journal of the Spanish Society for Microbiology.

[20]  O. Franco,et al.  Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1 , 2013, Front. Microbiol..

[21]  M. Hilpert,et al.  Identification of Tet45, a tetracycline efflux pump, from a poultry-litter-exposed soil isolate and persistence of tet(45) in the soil. , 2013, The Journal of antimicrobial chemotherapy.

[22]  J. Nodwell,et al.  The TetR Family of Regulators , 2013, Microbiology and Molecular Reviews.

[23]  L. E. Casados-Vázquez,et al.  Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. , 2013, Canadian journal of microbiology.

[24]  Jay D. Evans,et al.  Standard methods for American foulbrood research , 2013 .

[25]  N. Moran,et al.  Long-Term Exposure to Antibiotics Has Caused Accumulation of Resistance Determinants in the Gut Microbiota of Honeybees , 2012, mBio.

[26]  H. D. De brabander,et al.  Antimicrobials in beekeeping. , 2012, Veterinary microbiology.

[27]  W. A. van der Donk,et al.  Discovery, biosynthesis, and engineering of lantipeptides. , 2012, Annual review of biochemistry.

[28]  C. Nielsen-Leroux,et al.  How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. , 2012, Current opinion in microbiology.

[29]  M. Hilpert,et al.  Detection of a Common and Persistent tet(L)-Carrying Plasmid in Chicken-Waste-Impacted Farm Soil , 2012, Applied and Environmental Microbiology.

[30]  F. Valicente,et al.  Plasmid patterns of efficient and inefficient strains of Bacillus thuringiensis against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). , 2011, Neotropical entomology.

[31]  A. Amadio,et al.  Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. , 2009, Plasmid.

[32]  J. Churey,et al.  Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. , 2009, FEMS microbiology letters.

[33]  A. Alippi,et al.  Tetracycline and oxytetracycline resistance determinants detected in Bacillus cereus strains isolated from honey samples. , 2008, Revista Argentina de microbiologia.

[34]  M. Ongena,et al.  Bacillus lipopeptides: versatile weapons for plant disease biocontrol. , 2008, Trends in microbiology.

[35]  D. Grasso,et al.  Evidence for plasmid-mediated tetracycline resistance in Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees. , 2007, Veterinary microbiology.

[36]  A. Alippi,et al.  Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. , 2007, International journal of food microbiology.

[37]  Trevor C. Charles,et al.  A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification , 2006, Journal of applied microbiology.

[38]  F. Reynaldi,et al.  Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. , 2006, Journal of invertebrate pathology.

[39]  M. Roberts Update on acquired tetracycline resistance genes. , 2005, FEMS microbiology letters.

[40]  O. M. Aguilar,et al.  Molecular epidemiology of Paenibacillus larvae larvae and incidence of American foulbrood in Argentinean honeys from Buenos Aires province , 2004 .

[41]  W. Witte,et al.  Multiplex PCR Assay for Simultaneous Detection of Nine Clinically Relevant Antibiotic Resistance Genes in Staphylococcus aureus , 2003, Journal of Clinical Microbiology.

[42]  A. Wilcks,et al.  The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. , 2003, Plasmid.

[43]  J. Handelsman,et al.  Zwittermicin A-producing strains of Bacillus cereus from diverse soils , 1994, Applied and environmental microbiology.

[44]  H. Abriouel,et al.  Diversity and applications of Bacillus bacteriocins. , 2011, FEMS microbiology reviews.

[45]  E. Genersch American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. , 2010, Journal of invertebrate pathology.

[46]  J. Côté,et al.  Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses , 2008, Antonie van Leeuwenhoek.

[47]  David W. Russell,et al.  Preparation of Plasmid DNA by Alkaline Lysis with SDS: Maxipreparation. , 2006, CSH protocols.