Polynomial Time Decidability of Weighted Synchronization under Partial Observability
暂无分享,去创建一个
Kim G. Larsen | Jirí Srba | Simon Laursen | Jan Kretínský | K. Larsen | J. Srba | Jan Křetínský | S. Laursen
[1] Sven Sandberg,et al. Homing and Synchronizing Sequences , 2004, Model-Based Testing of Reactive Systems.
[2] Daniele Gorla,et al. CONCUR 2014 - concurrency theory : 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014 : proceedings , 2014 .
[3] Kim G. Larsen,et al. Synchronizing Strategies under Partial Observability , 2014, CONCUR.
[4] Thierry Massart,et al. Infinite Synchronizing Words for Probabilistic Automata , 2011, MFCS.
[5] Esther M. Arkin,et al. Modularity of cycles and paths in graphs , 1991, JACM.
[6] Eitan M. Gurari,et al. Introduction to the theory of computation , 1989 .
[7] Thierry Massart,et al. Synchronizing Objectives for Markov Decision Processes , 2011, iWIGP.
[8] Gregory F. Sullivan,et al. Detecting cycles in dynamic graphs in polynomial time , 1988, STOC '88.
[9] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[10] Kurt Mehlhorn,et al. Faster Algorithms for Minimum Cycle Basis in Directed Graphs , 2008, SIAM J. Comput..
[11] Thierry Massart,et al. Robust Synchronization in Markov Decision Processes , 2014, CONCUR.
[12] Mikhail V. Volkov,et al. P(l)aying for Synchronization , 2012, CIAA.
[13] Kim G. Larsen,et al. Synchronizing Words for Weighted and Timed Automata , 2014, FSTTCS.
[14] Mikhail V. Volkov,et al. Synchronizing Automata and the Cerny Conjecture , 2008, LATA.