暂无分享,去创建一个
[1] B. Dreben,et al. The decision problem: Solvable classes of quantificational formulas , 1979 .
[2] Edmund Husserl,et al. E. Schröder, Vorlesungen über die Algebra der Logik (Exakte Logik), I. Band, Leipzig 1890 (1891) , 1979 .
[3] Soren Hallden,et al. The logic of nonsense , 1952, The free speech wars.
[4] Sergiu Rudeanu. Boolean functions and equations , 1974 .
[5] Wilhelm Ackermann,et al. Solvable Cases Of The Decision Problem , 1954 .
[6] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[7] Armin Biere,et al. Resolve and Expand , 2004, SAT.
[8] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[9] Dov M. Gabbay,et al. Second-order Quantifier Elimination , 2008 .
[10] Willem Conradie,et al. On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.
[11] Edward Griffor,et al. Logic's Lost Genius: The Life of Gerhard Gentzen , 2007 .
[12] Carsten Lutz,et al. Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.
[13] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[14] Richard Zach,et al. Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.
[15] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[16] A. Church. A Set of Postulates for the Foundation of Logic , 1932 .
[17] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[18] Gabriel M. Kuper,et al. Constraint Query Languages , 1995, J. Comput. Syst. Sci..
[19] Harald Ganzinger,et al. Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.
[20] H. Bedmann,et al. Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .
[21] Wilhelm Ackermann,et al. Ein Typenfreies System der Logik mit Ausreichender Mathematischer Anwendungsfähigkeit I , 1958 .
[22] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[23] Hao Wang,et al. Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..
[24] Christoph Weidenbach,et al. Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.
[25] J. Hintikka. The Principles of Mathematics Revisited: Introduction , 1996 .
[26] Christoph Wernhard,et al. Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications , 2015, TABLEAUX.
[27] W. Ackermann,et al. Grundzüge der theoretischen Logik , 1928 .
[28] Paul Ziertmann. MITTEILUNGEN UND NACHRICHTEN , 1955 .
[29] C. Thiel. A Short Introduction to Löwenheim's Life and Work and to a Hitherto Unknown Paper , 2007 .
[30] William Craig,et al. Elimination problems in logic: a brief history , 2008, Synthese.
[31] Heinrich Behmann. THE PARADOXES OF LOGIC , 1937 .
[32] Christoph Wernhard,et al. Tableaux for Projection Computation and Knowledge Compilation , 2009, TABLEAUX.
[33] Joseph S. Wholey,et al. Review: Janos Suranyi, Reduktionstheorie des Entscheidungsproblems im Pradikatenkalkul der Ersten Stufe , 1960, Journal of Symbolic Logic.
[34] Christoph Wernhard,et al. The Boolean Solution Problem from the Perspective of Predicate Logic (Abstract) , 2017, SOQE.
[35] Peter Z. Revesz. Introduction to Databases - From Biological to Spatio-Temporal , 2010, Texts in Computer Science.
[36] Heinrich Behmann. Der Pradikatenkalkul mit Limitierten Variablen Grundlegung Einer Naturlichen Exakten Logik , 1959, J. Symb. Log..
[37] Renate A. Schmidt,et al. The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..
[38] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[39] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[40] Wilhelm Ackermann. Über die Erfüllbarkeit gewisser Zählausdrücke , 1928 .
[41] Paolo Mancosu,et al. HEINRICH BEHMANN’S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC , 2015, The Bulletin of Symbolic Logic.
[42] M. Schönfinkel. Über die Bausteine der mathematischen Logik , 1924 .
[43] P. Bernays,et al. Zum Entscheidungsproblem der mathematischen Logik , 1928 .
[44] Robert A. Kowalski,et al. The Semantics of Predicate Logic as a Programming Language , 1976, JACM.
[45] Donald W. Loveland,et al. Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.
[46] Alonzo Church,et al. Introduction to Mathematical Logic , 1991 .
[47] G. Boole. An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .
[48] Patrick Koopmann,et al. Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.
[49] Christian G. Fermüller,et al. Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.
[50] Heinrich Behmann. Das Auflösungsproblem in der Klassenlogik , 1951, Arch. Math. Log..
[51] Wolfgang Bibel,et al. An approach to a systematic theorem proving procedure in first-order logic , 1974, Computing.
[52] William Craig,et al. Bases for first-order theories and subtheories , 1960, Journal of Symbolic Logic.
[53] J. C. Shepherdson,et al. Reduktionstheorie des Entscheidungsproblems im Pradikatenkalkul der ersten Stufe , 1961, The Mathematical Gazette.
[54] Martin Otto,et al. An Interpolation Theorem , 2000, Bulletin of Symbolic Logic.
[55] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[56] Andrzej Szałas,et al. ELIMINATION OF PREDICATE QUANTIFIERS , 1999 .
[57] Christoph Wernhard. Circumscription and Projection as Primitives of Logic Programming , 2010, ICLP.
[58] Henry M. Sheffer. A set of five independent postulates for Boolean algebras, with application to logical constants , 1913 .
[59] Jörg Flum,et al. Einführung in die mathematische Logik , 2018 .
[60] David Hilbert,et al. On the Foundations of Logic and Arithmetic. , 1905 .
[61] Uwe Egly. On the Value of Antiprenexing , 1994, LPAR.
[62] W. V. Quine. On the Logic of Quantification , 1945, J. Symb. Log..
[63] Harry R. Lewis,et al. Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..
[64] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[65] Margherita Pagani,et al. Second Edition , 2004 .
[66] Paolo Mancosu. Between Russell and Hilbert: Behmann on the foundations of mathematics , 1999, Bull. Symb. Log..
[67] Valentin Goranko,et al. SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.
[68] K. Schütte. Untersuchungen zum Entscheidungsproblem der mathematischen Logik , 1934 .
[69] C. Siegel. Vorlesungen über die Algebra der Logik , 1907 .
[70] Carsten Lutz,et al. Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.
[71] Wilfrid Hodges,et al. A Shorter Model Theory , 1997 .
[72] P. Koopmann,et al. Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .
[73] Christoph Wernhard,et al. Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.
[74] Antonis C. Kakas,et al. The role of abduction in logic programming , 1998 .
[75] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül , 1915 .
[76] Boris Konev,et al. Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.
[77] George W. Ernst. The Utility of Independent Subgoals in Theorem Proving , 1971, Inf. Control..
[78] E. Schröder. Vorlesungen uber die Algebra der Logik , 1967 .
[79] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[80] Wilhelm Ackermann,et al. Zum Eliminationsproblem der mathematischen Logik , 1935 .