Heinrich Behmann's Contributions to Second-Order Quantifier Elimination from the View of Computational Logic

For relational monadic formulas (the L\"owenheim class) second-order quantifier elimination, which is closely related to computation of uniform interpolants, projection and forgetting - operations that currently receive much attention in knowledge processing - always succeeds. The decidability proof for this class by Heinrich Behmann from 1922 explicitly proceeds by elimination with equivalence preserving formula rewriting. Here we reconstruct the results from Behmann's publication in detail and discuss related issues that are relevant in the context of modern approaches to second-order quantifier elimination in computational logic. In addition, an extensive documentation of the letters and manuscripts in Behmann's bequest that concern second-order quantifier elimination is given, including a commented register and English abstracts of the German sources with focus on technical material. In the late 1920s Behmann attempted to develop an elimination-based decision method for formulas with predicates whose arity is larger than one. His manuscripts and the correspondence with Wilhelm Ackermann show technical aspects that are still of interest today and give insight into the genesis of Ackermann's landmark paper "Untersuchungen \"uber das Eliminationsproblem der mathematischen Logik" from 1935, which laid the foundation of the two prevailing modern approaches to second-order quantifier elimination.

[1]  B. Dreben,et al.  The decision problem: Solvable classes of quantificational formulas , 1979 .

[2]  Edmund Husserl,et al.  E. Schröder, Vorlesungen über die Algebra der Logik (Exakte Logik), I. Band, Leipzig 1890 (1891) , 1979 .

[3]  Soren Hallden,et al.  The logic of nonsense , 1952, The free speech wars.

[4]  Sergiu Rudeanu Boolean functions and equations , 1974 .

[5]  Wilhelm Ackermann,et al.  Solvable Cases Of The Decision Problem , 1954 .

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[8]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[9]  Dov M. Gabbay,et al.  Second-order Quantifier Elimination , 2008 .

[10]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[11]  Edward Griffor,et al.  Logic's Lost Genius: The Life of Gerhard Gentzen , 2007 .

[12]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[13]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[14]  Richard Zach,et al.  Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.

[15]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[16]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[17]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[18]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[19]  Harald Ganzinger,et al.  Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.

[20]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[21]  Wilhelm Ackermann,et al.  Ein Typenfreies System der Logik mit Ausreichender Mathematischer Anwendungsfähigkeit I , 1958 .

[22]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[23]  Hao Wang,et al.  Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..

[24]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[25]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[26]  Christoph Wernhard,et al.  Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications , 2015, TABLEAUX.

[27]  W. Ackermann,et al.  Grundzüge der theoretischen Logik , 1928 .

[28]  Paul Ziertmann MITTEILUNGEN UND NACHRICHTEN , 1955 .

[29]  C. Thiel A Short Introduction to Löwenheim's Life and Work and to a Hitherto Unknown Paper , 2007 .

[30]  William Craig,et al.  Elimination problems in logic: a brief history , 2008, Synthese.

[31]  Heinrich Behmann THE PARADOXES OF LOGIC , 1937 .

[32]  Christoph Wernhard,et al.  Tableaux for Projection Computation and Knowledge Compilation , 2009, TABLEAUX.

[33]  Joseph S. Wholey,et al.  Review: Janos Suranyi, Reduktionstheorie des Entscheidungsproblems im Pradikatenkalkul der Ersten Stufe , 1960, Journal of Symbolic Logic.

[34]  Christoph Wernhard,et al.  The Boolean Solution Problem from the Perspective of Predicate Logic (Abstract) , 2017, SOQE.

[35]  Peter Z. Revesz Introduction to Databases - From Biological to Spatio-Temporal , 2010, Texts in Computer Science.

[36]  Heinrich Behmann Der Pradikatenkalkul mit Limitierten Variablen Grundlegung Einer Naturlichen Exakten Logik , 1959, J. Symb. Log..

[37]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[38]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[39]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[40]  Wilhelm Ackermann Über die Erfüllbarkeit gewisser Zählausdrücke , 1928 .

[41]  Paolo Mancosu,et al.  HEINRICH BEHMANN’S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC , 2015, The Bulletin of Symbolic Logic.

[42]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[43]  P. Bernays,et al.  Zum Entscheidungsproblem der mathematischen Logik , 1928 .

[44]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[45]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[46]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[47]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[48]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[49]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[50]  Heinrich Behmann Das Auflösungsproblem in der Klassenlogik , 1951, Arch. Math. Log..

[51]  Wolfgang Bibel,et al.  An approach to a systematic theorem proving procedure in first-order logic , 1974, Computing.

[52]  William Craig,et al.  Bases for first-order theories and subtheories , 1960, Journal of Symbolic Logic.

[53]  J. C. Shepherdson,et al.  Reduktionstheorie des Entscheidungsproblems im Pradikatenkalkul der ersten Stufe , 1961, The Mathematical Gazette.

[54]  Martin Otto,et al.  An Interpolation Theorem , 2000, Bulletin of Symbolic Logic.

[55]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[56]  Andrzej Szałas,et al.  ELIMINATION OF PREDICATE QUANTIFIERS , 1999 .

[57]  Christoph Wernhard Circumscription and Projection as Primitives of Logic Programming , 2010, ICLP.

[58]  Henry M. Sheffer A set of five independent postulates for Boolean algebras, with application to logical constants , 1913 .

[59]  Jörg Flum,et al.  Einführung in die mathematische Logik , 2018 .

[60]  David Hilbert,et al.  On the Foundations of Logic and Arithmetic. , 1905 .

[61]  Uwe Egly On the Value of Antiprenexing , 1994, LPAR.

[62]  W. V. Quine On the Logic of Quantification , 1945, J. Symb. Log..

[63]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[64]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[65]  Margherita Pagani,et al.  Second Edition , 2004 .

[66]  Paolo Mancosu Between Russell and Hilbert: Behmann on the foundations of mathematics , 1999, Bull. Symb. Log..

[67]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[68]  K. Schütte Untersuchungen zum Entscheidungsproblem der mathematischen Logik , 1934 .

[69]  C. Siegel Vorlesungen über die Algebra der Logik , 1907 .

[70]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[71]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[72]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[73]  Christoph Wernhard,et al.  Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.

[74]  Antonis C. Kakas,et al.  The role of abduction in logic programming , 1998 .

[75]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[76]  Boris Konev,et al.  Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.

[77]  George W. Ernst The Utility of Independent Subgoals in Theorem Proving , 1971, Inf. Control..

[78]  E. Schröder Vorlesungen uber die Algebra der Logik , 1967 .

[79]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[80]  Wilhelm Ackermann,et al.  Zum Eliminationsproblem der mathematischen Logik , 1935 .