Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

[1]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[2]  D. Holmes,et al.  Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility , 2008, BMC Microbiology.

[3]  Cindy J. Castelle,et al.  A New Iron-oxidizing/O2-reducing Supercomplex Spanning Both Inner and Outer Membranes, Isolated from the Extreme Acidophile Acidithiobacillus ferrooxidans* , 2008, Journal of Biological Chemistry.

[4]  D. Newman,et al.  From iron oxides to infections , 2008, Geobiology.

[5]  K. Forchhammer,et al.  P(II) signal transducers: novel functional and structural insights. , 2008, Trends in microbiology.

[6]  Fernando A Pagliai,et al.  The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates , 2008, Applied and Environmental Microbiology.

[7]  K. Kamimura,et al.  Purification and Characterization of Sulfide:Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans , 2007, Bioscience, biotechnology, and biochemistry.

[8]  K. Kamimura,et al.  Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. , 2007, Journal of biotechnology.

[9]  D. Johnson,et al.  Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. , 2007, Environmental microbiology.

[10]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[11]  Heidi J Imker,et al.  Mechanistic diversity in the RuBisCO superfamily: the "enolase" in the methionine salvage pathway in Geobacillus kaustophilus. , 2007, Biochemistry.

[12]  Inti Pedroso,et al.  Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans , 2007, Nucleic acids research.

[13]  D. Holmes,et al.  Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans , 2007, Applied and Environmental Microbiology.

[14]  G. Levicán,et al.  Regulation of a glutamyl-tRNA synthetase by the heme status , 2007, Proceedings of the National Academy of Sciences.

[15]  D. Newman,et al.  The fox Operon from Rhodobacter Strain SW2 Promotes Phototrophic Fe(II) Oxidation in Rhodobacter capsulatus SB1003 , 2006, Journal of bacteriology.

[16]  D. Newman,et al.  The pio Operon Is Essential for Phototrophic Fe(II) Oxidation in Rhodopseudomonas palustris TIE-1 , 2006, Journal of bacteriology.

[17]  D. Lovley,et al.  Possible Nonconductive Role of Geobacter sulfurreducens Pilus Nanowires in Biofilm Formation , 2006, Journal of bacteriology.

[18]  D. Holmes,et al.  GENETIC AND BIOINFORMATIC INSIGHTS INTO IRON AND SULFUR OXIDATION MECHANISMS OF BIOLEACHING ORGANISMS , 2007 .

[19]  D. Holmes,et al.  Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. , 2007, Microbiology.

[20]  J. Förster,et al.  Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans , 2007, JBIC Journal of Biological Inorganic Chemistry.

[21]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[22]  Patricia Siguier,et al.  Insertion sequences in prokaryotic genomes. , 2006, Current opinion in microbiology.

[23]  Felipe A. Veloso,et al.  Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans , 2006 .

[24]  Felipe A. Veloso,et al.  Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling , 2006 .

[25]  S. Malfatti,et al.  Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707 , 2006, Applied and Environmental Microbiology.

[26]  Luis H. Ocampo,et al.  The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2 , 2006, PLoS biology.

[27]  Warren A Dick,et al.  Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage. , 2006, Journal of environmental quality.

[28]  D. Newman,et al.  The co-evolution of life and Earth , 2006, Current Biology.

[29]  H. Beller,et al.  Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans under Aerobic versus Denitrifying Conditions , 2006, Journal of bacteriology.

[30]  R. Dixon,et al.  Role of the central region of NifL in conformational switches that regulate nitrogen fixation. , 2006, Biochemical Society transactions.

[31]  W. Sand,et al.  Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. , 2006, Research in microbiology.

[32]  T. Sugio,et al.  Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1. , 2006, Environmental sciences : an international journal of environmental physiology and toxicology.

[33]  S. Silver,et al.  A bacterial view of the periodic table: genes and proteins for toxic inorganic ions , 2005, Journal of Industrial Microbiology and Biotechnology.

[34]  R. Amils,et al.  Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. , 2005, Astrobiology.

[35]  David S. Holmes,et al.  Identification of a Gene Cluster for the Formation of Extracellular Polysaccharide Precursors in the Chemolithoautotroph Acidithiobacillus ferrooxidans , 2005, Applied and Environmental Microbiology.

[36]  K. Kamimura,et al.  Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. , 2005, Journal of bioscience and bioengineering.

[37]  C. Friedrich,et al.  Prokaryotic sulfur oxidation. , 2005, Current opinion in microbiology.

[38]  D. Holmes,et al.  The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. , 2005, Microbiology.

[39]  D. Holmes,et al.  Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans , 2005, Journal of Industrial Microbiology and Biotechnology.

[40]  R. Amils,et al.  The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. , 2005, Microbiology.

[41]  D. Blowes,et al.  Low molecular weight carboxylic acids in oxidizing porphyry copper tailings. , 2005, Environmental science & technology.

[42]  J. Mobarec,et al.  Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. , 2005, Omics : a journal of integrative biology.

[43]  D. Rawlings The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. , 2005, Plasmid.

[44]  D. Holmes,et al.  A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. , 2005, Biological research.

[45]  Jeremy Felce,et al.  Carbonic Anhydrases Fused to Anion Transporters of the SulP Family: Evidence for a Novel Type of Bicarbonate Transporter , 2005, Journal of Molecular Microbiology and Biotechnology.

[46]  Katherine H. Kang,et al.  Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath) , 2004, PLoS biology.

[47]  M. Ishii,et al.  CO2-Responsive Expression and Gene Organization of Three Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Enzymes and Carboxysomes in Hydrogenovibrio marinus Strain MH-110 , 2004, Journal of bacteriology.

[48]  Carlos A. Jerez,et al.  Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans , 2004, Applied and Environmental Microbiology.

[49]  D. Kahn,et al.  Genetic regulation of biological nitrogen fixation , 2004, Nature Reviews Microbiology.

[50]  T. Urich,et al.  Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane‐bound thiosulphate:quinone oxidoreductase , 2004, Molecular microbiology.

[51]  V. Bonnefoy,et al.  Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. , 2004, Microbiology.

[52]  D. Holmes,et al.  Apparent redundancy of electron transfer pathways via bc(1) complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. , 2004, Biochimica et biophysica acta.

[53]  D. Kelly,et al.  A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? , 2004, FEMS microbiology reviews.

[54]  S. Kawasaki,et al.  Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria , 2004, Archives of Microbiology.

[55]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[56]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[57]  D. Söll,et al.  In vivo formation of glutamyl‐tRNAGln in Escherichia coli by heterologous glutamyl‐tRNA synthetases , 2004, FEBS letters.

[58]  K. Kamimura,et al.  Involvement of Sulfide:Quinone Oxidoreductase in Sulfur Oxidation of an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans NASF-1 , 2004, Bioscience, biotechnology, and biochemistry.

[59]  Felipe A. Veloso,et al.  Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis , 2003, BMC Genomics.

[60]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[61]  D. Holmes,et al.  Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence , 2003 .

[62]  M. Leblanc,et al.  Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage , 2003, Applied and Environmental Microbiology.

[63]  F. Lottspeich,et al.  Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. , 2003, Microbiology.

[64]  R. Amann,et al.  Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.

[65]  J. Deutscher,et al.  Transcription Regulators Potentially Controlled by HPr Kinase/Phosphorylase in Gram-Negative Bacteria , 2003, Journal of Molecular Microbiology and Biotechnology.

[66]  D. Fine,et al.  Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[68]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[69]  Bronwyn G. Butcher,et al.  The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. , 2002, Microbiology.

[70]  P. Bruscella,et al.  The bc(1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc(1) complex? , 2002, Biochimica et biophysica acta.

[71]  G. Cannon,et al.  Two Copies of Form I RuBisCO Genes in Acidithiobacillus ferrooxidans ATCC 23270 , 2002, Current Microbiology.

[72]  Ingeborg Holt,et al.  The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  E. M. Benelli,et al.  Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[74]  B. Berks,et al.  Assembly of membrane-bound respiratory complexes by the Tat protein-transport system , 2002, Archives of Microbiology.

[75]  H. Saiki,et al.  Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans , 2002, Journal of bacteriology.

[76]  R. Hedderich,et al.  Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Brasseur,et al.  Cytochromes c of Acidithiobacillus ferrooxidans. , 2002, FEMS microbiology letters.

[78]  D. Holmes,et al.  Characterization of the petI and res Operons of Acidithiobacillus ferrooxidans , 2002, Journal of bacteriology.

[79]  K. Lund,et al.  The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans Is an Outer Membrane Protein , 2002, Journal of bacteriology.

[80]  H. Saiki,et al.  Electrochemical Regeneration of Fe(III) To Support Growth on Anaerobic Iron Respiration , 2002, Applied and Environmental Microbiology.

[81]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[82]  P. Bruscella,et al.  The bc(1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc(1) complex? , 2002, Biochimica et biophysica acta.

[83]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[84]  D. Holmes,et al.  ISAfe1, an ISL3 Family Insertion Sequence fromAcidithiobacillus ferrooxidans ATCC 19859 , 2001, Journal of bacteriology.

[85]  V. Deretic,et al.  Mycobacterial FurA is a negative regulator of catalase–peroxidase gene katG , 2001, Molecular microbiology.

[86]  V. Bonnefoy,et al.  Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation , 2001 .

[87]  J. Morales,et al.  Rio Tinto estuary (Spain): 5000 years of pollution , 2000 .

[88]  C. Jerez,et al.  Molecular Cloning, Sequencing, and Expression ofomp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans , 2000, Applied and Environmental Microbiology.

[89]  Bronwyn G. Butcher,et al.  The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli , 2000, Applied and Environmental Microbiology.

[90]  V. Bonnefoy,et al.  Construction and Characterization of arecA Mutant of Thiobacillus ferrooxidans by Marker Exchange Mutagenesis , 2000, Journal of bacteriology.

[91]  R. Overbeek,et al.  Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[92]  K. Kamimura,et al.  Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. , 2000, Journal of bioscience and bioengineering.

[93]  P. Vignais,et al.  The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two‐component HupT/HupR system , 1999, Molecular microbiology.

[94]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[95]  Violaine Bonnefoy,et al.  Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidansATCC 33020 , 1999, Applied and Environmental Microbiology.

[96]  T. Buhrke,et al.  Positive Transcriptional Feedback Controls Hydrogenase Expression in Alcaligenes eutrophusH16 , 1999, Journal of bacteriology.

[97]  J. Vanderleyden,et al.  Identification and Characterization ofhupT, a Gene Involved in Negative Regulation of Hydrogen Oxidation in Bradyrhizobium japonicum , 1999, Journal of bacteriology.

[98]  Thomas D. Schneider,et al.  OxyR and SoxRS Regulation offur , 1999, Journal of bacteriology.

[99]  F. Widdel,et al.  Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. , 1999, International journal of systematic bacteriology.

[100]  G. Olsen,et al.  CRITICA: coding region identification tool invoking comparative analysis. , 1999, Molecular biology and evolution.

[101]  O. Lenz,et al.  A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  N. Craig,et al.  A Tn7-Like Transposon Is Present in theglmUS Region of the Obligately Chemoautolithotrophic Bacterium Thiobacillus ferrooxidans , 1998, Journal of bacteriology.

[103]  M. Quail,et al.  A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. , 1997, Microbiology.

[104]  W. Purschke,et al.  The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization , 1997, Journal of bacteriology.

[105]  J. Koizumi,et al.  Sulfur-binding protein of flagella of Thiobacillus ferrooxidans , 1996, Journal of bacteriology.

[106]  J. Craig Venter,et al.  A new strategy for genome sequencing , 1996, Nature.

[107]  R. Kraft,et al.  Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans , 1996, Archives of Microbiology.

[108]  B. Guigliarelli,et al.  Biochemical and EPR characterization of a high potential iron‐sulfur protein in Thiobacillus ferrooxidans , 1995 .

[109]  M. Adams,et al.  Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur , 1994, Journal of bacteriology.

[110]  W. Yan,et al.  Plasmid and transposon transfer to Thiobacillus ferrooxidans , 1994, Journal of bacteriology.

[111]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[112]  W. Zillig Confusion in the assignments of Sulfolobus sequences to Sulfolobus species. , 1993, Nucleic acids research.

[113]  M. Seeger,et al.  Phosphate-starvation induced changes in Thiobacillus ferrooxidans. , 1993, FEMS microbiology letters.

[114]  P. Bos,et al.  Anaerobic Growth of Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[115]  T. Kusano,et al.  Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. High homology of the gene product with HiPIP. , 1992, The Journal of biological chemistry.

[116]  T. Sugio,et al.  Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans , 1992, Journal of bacteriology.

[117]  X. Jordana,et al.  Isolation and nucleotide sequence of theThiobacillus ferrooxidans genes for the small and large subunits of ribulose 1,5‐bisphosphate car☐ylase/oxygenase , 1991, FEBS letters.

[118]  T. Kusano,et al.  Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans , 1991, Journal of bacteriology.

[119]  J. Pronk,et al.  Growth of Thiobacillus ferrooxidans on Formic Acid , 1991, Applied and environmental microbiology.

[120]  M. Seeger,et al.  Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans , 1991, Journal of bacteriology.

[121]  K. Stetter,et al.  Thiobacillus ferrooxidans, a facultative hydrogen oxidizer , 1990, Applied and environmental microbiology.

[122]  J. Pronk,et al.  Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. , 1990 .

[123]  D. Rawlings Sequence and structural analysis of the α- and β-dinitrogenase subunits of Thiobacillus ferrooxidans , 1988 .

[124]  Y. Fukumori,et al.  Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans , 1988 .

[125]  D. Rawlings Sequence and structural analysis of the alpha- and beta-dinitrogenase subunits of Thiobacillus ferrooxidans. , 1988, Gene.

[126]  F. Tabita Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. , 1988, Microbiological reviews.

[127]  K. Inagaki,et al.  Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans , 1987, Journal of bacteriology.

[128]  D. R. Woods,et al.  Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans , 1987, Journal of bacteriology.

[129]  D. R. Woods,et al.  Identification and cloning of Thiobacillus ferrooxidans structural nif genes in Escherichia coli. , 1986, Gene.

[130]  T. Sugio,et al.  Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans , 1985, Applied and environmental microbiology.

[131]  W. Zillig,et al.  SAV 1, a temperate u.v.‐inducible DNA virus‐like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12 , 1984, The EMBO journal.

[132]  S. Silver,et al.  Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans , 1982, Journal of bacteriology.

[133]  M. Mackintosh Nitrogen fixation by thiobacillus ferrooxidans , 1978 .

[134]  J. Vestal,et al.  The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans). , 1971, Canadian journal of biochemistry.

[135]  M. Silver Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). , 1970, Canadian journal of microbiology.

[136]  D. Lundgren,et al.  The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). , 1969, Canadian journal of biochemistry.

[137]  H. L. Holmes,et al.  SYNTHESIS OF SOME 1,4-NAPHTHOQUINONES AND REACTIONS RELATING TO THEIR USE IN THE STUDY OF BACTERIAL GROWTH INHIBITION, , 1968 .

[138]  D. Lundgren,et al.  Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). , 1968, Canadian journal of biochemistry.

[139]  N. Gale,et al.  Evidence for the Calvin Cycle and Hexose Monophosphate Pathway in Thiobacillus ferrooxidans , 1967, Journal of bacteriology.