Cell rheology: mush rather than machine.

The cytoplasm of living cells responds to deformation in much the same way as a water-filled sponge does. This behaviour, although intuitive, is connected to long-standing and unsolved fundamental questions in cell mechanics.

[1]  Dimitrije Stamenović,et al.  Effects of cytoskeletal prestress on cell rheological behavior. , 2005, Acta biomaterialia.

[2]  Ben Fabry,et al.  Cytoskeletal remodelling and slow dynamics in the living cell , 2005, Nature materials.

[3]  Linhong Deng,et al.  Universal physical responses to stretch in the living cell , 2007, Nature.

[4]  J. Fredberg,et al.  Glass-like dynamics of collective cell migration , 2011, Proceedings of the National Academy of Sciences.

[5]  Jeffrey J. Fredberg,et al.  Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness , 2009, PloS one.

[6]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[7]  D. Discher,et al.  Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. , 2005, Biophysical journal.

[8]  D A Weitz,et al.  Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition , 2009, Proceedings of the National Academy of Sciences.

[9]  M. S. Steinberg,et al.  Differential adhesion in morphogenesis: a modern view. , 2007, Current opinion in genetics & development.

[10]  K. Kroy,et al.  Resolving the Stiffening-Softening Paradox in Cell Mechanics , 2012, PloS one.

[11]  S. Newman Physico-Genetic Determinants in the Evolution of Development , 2012, Science.

[12]  G. Charras,et al.  The cytoplasm of living cells behaves as a poroelastic material , 2013, Nature materials.

[13]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[14]  D. Navajas,et al.  Scaling the microrheology of living cells. , 2001, Physical review letters.