Image fusion algorithm for differential phase contrast imaging

Differential phase-contrast imaging in the x-ray domain provides three physically complementary signals:1, 2 the attenuation, the differential phase-contrast, related to the refractive index, and the dark-field signal, strongly influenced by the total amount of radiation scattered into very small angles. In medical applications, it is of the utmost importance to present to the radiologist all clinically relevant information in as compact a way as possible. Hence, the need arises for a method to combine two or more of the above mentioned signals into one image containing all information relevant for diagnosis. We present an image composition algorithm that fuses the attenuation image and the differential phase contrast image into a composite, final image based on the assumption that the real and imaginary part of the complex refractive index of the sample can be related by a constant scaling factor. The merging is performed in such a way that the composite image is characterized by minimal noise-power at each frequency component.