High-performance electrode materials for lithium-ion batteries for electric vehicles

Abstract Research to develop new electrode materials in Li-ion batteries has been actively pursued to ­satisfy all the needs of electric vehicles including high energy densities, high power, and outstanding cycling performances. In this chapter, technical problems related to the ­high-­performance materials for lithium-ion automotive batteries were reviewed, and the technical issues of Li ion automotive batteries that remain to be worked out in the near future were also discussed for the their successful implementation in transportation systems.

[1]  Jingying Xie,et al.  SiOx-based anodes for secondary lithium batteries , 2002 .

[2]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[3]  C. Yoon,et al.  Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling , 2001 .

[4]  Soojin Park,et al.  Surface engineering of sponge-like silicon particles for high-performance lithium-ion battery anodes. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Xiangming He,et al.  Synthesis and characterization of LiNi0.6Mn0.4―xCoxO2 as cathode materials for Li-ion batteries , 2009 .

[6]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[7]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[8]  Yuki Yamada,et al.  Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO , 2010 .

[9]  Seung‐Taek Myung,et al.  Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties , 2005 .

[10]  Yang‐Kook Sun,et al.  Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution , 2009 .

[11]  R. Basu,et al.  Lanthanum-doped LiCoO2 cathode with high rate capability , 2009 .

[12]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[13]  Ji‐Guang Zhang,et al.  Synthesis and Characterization of Lithium Manganese Phosphate by a Precipitation Method , 2010 .

[14]  J. Owen,et al.  A Solution–Precursor Synthesis of Carbon-Coated LiFePO4 for Li-Ion Cells , 2005 .

[15]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[16]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[17]  Daniel P. Abraham,et al.  Layered Li(Ni0.5−xMn0.5−xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries , 2002 .

[18]  Jun-ichi Yamaki,et al.  Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere , 2009 .

[19]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[20]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[21]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[22]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[23]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[24]  P. He,et al.  Synthetic optimization of spherical LiCoO2 and precursor via uniform-phase precipitation , 2006 .

[25]  Byungwoo Park,et al.  The Effect of AlPO4-Coating Layer on the Electrochemical Properties in LiCoO2 Thin Films , 2006 .

[26]  Cheol‐Min Park,et al.  Modified SiO as a High Performance Anode for Li-Ion Batteries , 2012 .

[27]  Sylvain Franger,et al.  LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance , 2002 .

[28]  Zi-Feng Ma,et al.  A Novel Synthesis Route for LiFePO4 / C Cathode Materials for Lithium-Ion Batteries , 2004 .

[29]  Jang Wook Choi,et al.  Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. , 2013, Nano letters.

[30]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[31]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[32]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[33]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[34]  Robert Kostecki,et al.  Effect of surface carbon structure on the electrochemical performance of LiFePO{sub 4} , 2003 .

[35]  Li Wang,et al.  Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries , 2006 .

[36]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[37]  Yang‐Kook Sun,et al.  Synthesis of silicon/carbon, multi-core/shell microspheres using solution polymerization for a high performance Li ion battery , 2011 .

[38]  Chong Seung Yoon,et al.  Enhanced electrochemical performance of carbon–LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries , 2011 .

[39]  Zhong-Min Su,et al.  Optimized LiFePO4–Polyacene Cathode Material for Lithium‐Ion Batteries , 2006 .

[40]  R. Holze,et al.  Carbon anode materials for lithium ion batteries , 2003 .

[41]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[42]  Konstantin Konstantinov,et al.  Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source , 2004 .

[43]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[44]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[45]  Hyung-Man Cho,et al.  A study on time-dependent low temperature power performance of a lithium-ion battery , 2012 .

[46]  Fei Gao,et al.  Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method , 2007 .

[47]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[48]  Seung M. Oh,et al.  Micrometer‐Sized, Nanoporous, High‐Volumetric‐Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium‐Ion Batteries , 2011, Advanced materials.

[49]  Ju-tang Sun,et al.  Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide , 2005 .

[50]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[51]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[52]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[53]  Zhiguo Zhang,et al.  A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material , 2007 .

[54]  G. Ceder,et al.  LiAl y Co1 − y O 2 ( R 3̄m ) Intercalation Cathode for Rechargeable Lithium Batteries , 1999 .

[55]  Jean-Marie Tarascon,et al.  Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) Electrode Materials , 2005 .

[56]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[57]  E. Zhecheva,et al.  Facile synthesis of LiMnPO4 olivines with a plate-like morphology from a dittmarite-type KMnPO4·H2O precursor. , 2011, Dalton transactions.

[58]  M. Whittingham,et al.  Hydrothermal synthesis of lithium iron phosphate cathodes , 2001 .

[59]  Yi-Ping Chiang,et al.  Electrochemical properties of LiFe0.9Mg0.1PO4 / carbon cathode materials prepared by ultrasonic spray pyrolysis , 2007 .

[60]  Yangang Sun,et al.  Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. , 2014, ChemSusChem.

[61]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[62]  Chong Seung Yoon,et al.  A Novel Cathode Material with a Concentration‐Gradient for High‐Energy and Safe Lithium‐Ion Batteries , 2010 .

[63]  Seung M. Oh,et al.  Improving the electrochemical performance of LiMn0.85Fe0.15PO4–LiFePO4 core–shell materials based on an investigation of carbon source effect , 2013 .

[64]  A. Yamada,et al.  ChemInform Abstract: Phase Diagram of Lix(MnyFe1-y)PO4 (0 = x,y = 1). , 2010 .

[65]  J. Barker,et al.  Lithium Iron(II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method , 2003 .

[66]  H. Takei,et al.  Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction , 2001 .

[67]  Seong-In Moon,et al.  A new SiO/C anode composition for lithium-ion battery , 2008 .

[68]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[69]  Paul Bowen,et al.  Effect of particle size on LiMnPO4 cathodes , 2007 .

[70]  Y. M. Lee,et al.  Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes , 2012 .

[71]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[72]  Yuping Wu,et al.  Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery , 2008 .

[73]  A. Yamada,et al.  Comparative Kinetic Study of Olivine Li x MPO 4 ( M = Fe , Mn) , 2004 .

[74]  Seung M. Oh,et al.  Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries , 2009 .

[75]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[76]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[77]  T. Fukunaga,et al.  Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering , 2004 .

[78]  Yunbo Zhang,et al.  Contact‐Engineered and Void‐Involved Silicon/Carbon Nanohybrids as Lithium‐Ion‐Battery Anodes , 2013, Advanced materials.

[79]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[80]  Ivo Teerlinck,et al.  Enhanced Electrochemical Performance of Mesoparticulate LiMnPO4 for Lithium Ion Batteries , 2006 .

[81]  Colin A. Vincent,et al.  Capacity Loss of Lithium Manganese Oxide Spinel in LiPF6 / Ethylene Carbonate‐Dimethyl Carbonate Electrolytes , 1999 .

[82]  Jing Ning,et al.  High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. , 2013, Nano letters.

[83]  N. Takami,et al.  Nano Si Cluster- SiO x ‐C Composite Material as High-Capacity Anode Material for Rechargeable Lithium Batteries , 2006 .

[84]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[85]  R. Loisel,et al.  Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts , 2014 .

[86]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[87]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[88]  K. Amine,et al.  Significant Improvement of Electrochemical Performance of AlF3-Coated Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials , 2007 .

[89]  M. Yoshio,et al.  Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations , 2003 .

[90]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[91]  Xianglong Li,et al.  Managing voids of Si anodes in lithium ion batteries. , 2013, Nanoscale.

[92]  Dunwei Wang,et al.  Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries. , 2010, Nano letters.

[93]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[94]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .

[95]  Zhihui Xu,et al.  A PEG assisted sol–gel synthesis of LiFePO4 as cathodic material for lithium ion cells , 2007 .

[96]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[97]  G. Henkelman,et al.  Lithium insertion in nanostructured TiO(2)(B) architectures. , 2013, Accounts of chemical research.

[98]  J. Prakash,et al.  Synthesis and Electrochemical Properties of Li [ Ni1 / 3Co1 / 3Mn ( 1 / 3 − x ) Mg x ] O 2 − y F y via Coprecipitation , 2004 .

[99]  Seung‐Taek Myung,et al.  Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2 by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties , 2006 .

[100]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[101]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[102]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[103]  Huakun Liu,et al.  Characterization of Nanocrystalline Si-MCMB Composite Anode Materials , 2004 .

[104]  A. Yamada,et al.  Phase Diagram of Li x ( Mn y Fe1 − y ) PO 4 ( 0 ⩽ x , y ⩽ 1 ) , 2001 .

[105]  Doron Aurbach,et al.  LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries , 2009 .

[106]  C. Deneke,et al.  An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO) , 2003 .

[107]  F. Nobili,et al.  Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper , 2009 .

[108]  Myounggu Park,et al.  Lithium‐Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint , 2012 .

[109]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[110]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[111]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[112]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[113]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[114]  U. V. Varadaraju,et al.  Lithium Intercalation into Nanocrystalline Brookite TiO2 , 2007 .

[115]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[116]  A. West,et al.  Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping , 1997 .

[117]  W. Mckinnon,et al.  Structure and electrochemistry of LixWO2 , 1991 .

[118]  Bruno Scrosati,et al.  High‐Performance Carbon‐LiMnPO4 Nanocomposite Cathode for Lithium Batteries , 2010 .

[119]  U. Paik,et al.  Silicon nanowires with a carbon nanofiber branch as lithium-ion anode material , 2011 .

[120]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[121]  Yang‐Kook Sun,et al.  Synthesis of ultrafine LiCoO2 powders by the sol-gel method , 1996, Journal of Materials Science.

[122]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[123]  Soojin Park,et al.  Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. , 2011, Nano letters.

[124]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[125]  Michael Grätzel,et al.  Improving the Electrochemical Activity of LiMnPO4 Via Mn-Site Substitution , 2010 .

[126]  Shinichi Komaba,et al.  Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material , 2004 .

[127]  Jianjun Li,et al.  Modification of natural graphite for lithium ion batteries , 2008 .

[128]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[129]  M. Ge,et al.  Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes , 2013, Nano Research.

[130]  Chong Seung Yoon,et al.  Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries. , 2006, The journal of physical chemistry. B.

[131]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[132]  Seung M. Oh,et al.  Si‐Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium‐Ion Batteries , 2013 .

[133]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[134]  J. Tarascon,et al.  Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li , 2002 .

[135]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[136]  Michael Grätzel,et al.  High-performance, nano-structured LiMnPO4 synthesized via a polyol method , 2009 .

[137]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[138]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[139]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[140]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[141]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[142]  Chong Seung Yoon,et al.  Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries , 2013 .

[143]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[144]  Seung M. Oh,et al.  Double-structured LiMn(0.85)Fe(0.15)PO4 coordinated with LiFePO4 for rechargeable lithium batteries. , 2012, Angewandte Chemie.

[145]  Chong Seung Yoon,et al.  Nanoporous Structured LiFePO4 with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries , 2009 .

[146]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[147]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[148]  Yang-Kook Sun,et al.  Microscale Core-Shell Structured Li [ ( Ni0.8Co0.1Mn0.1 ) 0.8 ( Ni0.5Mn0.5 ) 0.2 ] O2 as Positive Electrode Material for Lithium Batteries , 2006 .

[149]  Yang‐Kook Sun,et al.  The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C – LiFePO4 Prepared via Coprecipitation , 2008 .

[150]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[151]  K. Amine,et al.  Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries , 2010 .

[152]  K. Amine,et al.  Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries , 2010 .

[153]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[154]  Cheol‐Min Park,et al.  Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries , 2009 .

[155]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[156]  Yang‐Kook Sun,et al.  Improved rate capability of lithium-ion batteries with Ag nanoparticles deposited onto silicon/carbon composite microspheres as an anode material , 2013 .

[157]  Zhumabay Bakenov,et al.  Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries , 2010 .

[158]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[159]  Yang-Kook Sun,et al.  The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis , 2010 .

[160]  H. Yue,et al.  Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon , 2005 .

[161]  J. Dahn,et al.  Structure and electrochemistry of LixMoO2 , 1987 .

[162]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[163]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[164]  Bruno Scrosati,et al.  Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries , 2010, Advanced materials.

[165]  Robert Dominko,et al.  Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes , 2007 .

[166]  Haijiao Zhang,et al.  Morphology and electrical properties of carbon coated LiFePO4 cathode materials , 2009 .