Modified PHSS iterative methods for solving nonsingular and singular saddle point problems
暂无分享,去创建一个
[1] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[2] M. Ng,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[3] Bing Zheng,et al. On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .
[4] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[5] Guo-Feng Zhang,et al. Preconditioned AHSS iteration method for singular saddle point problems , 2013, Numerical Algorithms.
[6] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[7] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[8] Xu Li,et al. Modified accelerated parameterized inexact Uzawa method for singular and nonsingular saddle point problems , 2014, Appl. Math. Comput..
[9] Zhong-Zhi Bai,et al. Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..
[10] Xu Li,et al. On semi-convergence of the Uzawa-HSS method for singular saddle-point problems , 2015, Appl. Math. Comput..
[11] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[12] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[13] Jianjun Zhang,et al. A class of Uzawa-SOR methods for saddle point problems , 2010, Appl. Math. Comput..
[14] Zhong Xu,et al. Improved PPHSS iterative methods for solving nonsingular and singular saddle point problems , 2016, Comput. Math. Appl..
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[17] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[18] Xu Li,et al. Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for saddle-point problems , 2014, Int. J. Comput. Math..
[19] Richard S. Varga,et al. Matrix Iterative Analysis , 2000, The Mathematical Gazette.
[20] Guo-Feng Zhang,et al. A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..
[21] Gene H. Golub,et al. On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..
[22] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[23] Ke Wang,et al. Improved PHSS iterative methods for solving saddle point problems , 2016, Numerical Algorithms.
[24] Yimin Wei,et al. Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..
[25] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[26] Naimin Zhang,et al. A generalized preconditioned HSS method for singular saddle point problems , 2013, Numerical Algorithms.
[27] Zhong Xu,et al. A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems , 2017, Numerical Algorithms.
[28] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[29] Changfeng Ma,et al. A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..
[30] Zhong-Zhi Bai,et al. On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.
[31] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[32] Yujiang Wu,et al. On semi-convergence of generalized skew-Hermitian triangular splitting iteration methods for singular saddle-point problems , 2014, 1402.5480.
[33] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[34] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[35] Junfeng,et al. THE RESTRICTIVELY PRECONDITIONED CONJUGATE GRADIENT METHODS ON NORMAL RESIDUAL FOR BLOCK TWO-BY-TWO LINEAR SYSTEMS , 2008 .
[36] Valeria Simoncini,et al. Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..
[37] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[38] Zhong-Zhi Bai,et al. Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..
[39] Jae Heon Yun. Variants of the Uzawa method for saddle point problem , 2013, Comput. Math. Appl..
[40] Zhao-Zheng Liang,et al. Augmented block splitting preconditioner for singular saddle point problems , 2016, Appl. Math. Lett..
[41] Peng Guo,et al. A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..
[42] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .