Modified PHSS iterative methods for solving nonsingular and singular saddle point problems

For large sparse saddle point problems, we establish a new version of the preconditioned Hermitian and skew-Hermitian splitting (PHSS) iteration method, called the modified PHSS (MPHSS) method in this paper. Then, we theoretically study its convergence and semi-convergence properties and determine its optimal iteration parameter and corresponding optimal convergence factor. Furthermore, the spectral properties of the MPHSS preconditioned matrix are discussed in detail. Numerical experiments show that the MPHSS iteration method is effective and robust when it is used either as a solver or as a matrix splitting preconditioner for the generalized minimal residual (GMRES) method.

[1]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[2]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[3]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[4]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[5]  Guo-Feng Zhang,et al.  Preconditioned AHSS iteration method for singular saddle point problems , 2013, Numerical Algorithms.

[6]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[7]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[8]  Xu Li,et al.  Modified accelerated parameterized inexact Uzawa method for singular and nonsingular saddle point problems , 2014, Appl. Math. Comput..

[9]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[10]  Xu Li,et al.  On semi-convergence of the Uzawa-HSS method for singular saddle-point problems , 2015, Appl. Math. Comput..

[11]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[12]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[13]  Jianjun Zhang,et al.  A class of Uzawa-SOR methods for saddle point problems , 2010, Appl. Math. Comput..

[14]  Zhong Xu,et al.  Improved PPHSS iterative methods for solving nonsingular and singular saddle point problems , 2016, Comput. Math. Appl..

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[17]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[18]  Xu Li,et al.  Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for saddle-point problems , 2014, Int. J. Comput. Math..

[19]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[20]  Guo-Feng Zhang,et al.  A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..

[21]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[22]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[23]  Ke Wang,et al.  Improved PHSS iterative methods for solving saddle point problems , 2016, Numerical Algorithms.

[24]  Yimin Wei,et al.  Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..

[25]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[26]  Naimin Zhang,et al.  A generalized preconditioned HSS method for singular saddle point problems , 2013, Numerical Algorithms.

[27]  Zhong Xu,et al.  A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems , 2017, Numerical Algorithms.

[28]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[29]  Changfeng Ma,et al.  A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..

[30]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[31]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[32]  Yujiang Wu,et al.  On semi-convergence of generalized skew-Hermitian triangular splitting iteration methods for singular saddle-point problems , 2014, 1402.5480.

[33]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[34]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[35]  Junfeng,et al.  THE RESTRICTIVELY PRECONDITIONED CONJUGATE GRADIENT METHODS ON NORMAL RESIDUAL FOR BLOCK TWO-BY-TWO LINEAR SYSTEMS , 2008 .

[36]  Valeria Simoncini,et al.  Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..

[37]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[38]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[39]  Jae Heon Yun Variants of the Uzawa method for saddle point problem , 2013, Comput. Math. Appl..

[40]  Zhao-Zheng Liang,et al.  Augmented block splitting preconditioner for singular saddle point problems , 2016, Appl. Math. Lett..

[41]  Peng Guo,et al.  A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..

[42]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .