Double gravitational wave mergers

In this paper we study the dynamical outcome in which black hole (BH) binary-single interactions lead to two successive gravitational wave (GW) mergers; a scenario we refer to as a `double GW merger'. The first GW merger happens during the three-body interaction through a two-body GW capture, where the second GW merger is between the BH formed in the first GW merger and the remaining bound single BH. We estimate the probability for observing both GW mergers, and for observing only the second merger that we refer to as a `prompt second-generation (2G) merger'. We find that the probability for observing both GW mergers is only notable for co-planar interactions with low GW kicks ($\lesssim 10^{1}-10^{2}$ kms$^{-1}$), which suggests that double GW mergers can be used to probe environments facilitating such interactions. For isotropic encounters, such as the one found in globular clusters, the probability for prompt 2G mergers to form is only at the percent level, suggesting that second-generation mergers are most likely to be between BHs which have swapped partners at least once.

[1]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[2]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[3]  Davide Gerosa,et al.  Are merging black holes born from stellar collapse or previous mergers , 2017, 1703.06223.

[4]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[5]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[6]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[7]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[8]  S. Chatterjee,et al.  Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. , 2017, Physical review letters.

[9]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[10]  C. Rodriguez,et al.  A Triple Origin for the Heavy and Low-spin Binary Black Holes Detected by LIGO/VIRGO , 2018, The Astrophysical Journal.

[11]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[12]  Three-body dynamics with gravitational wave emission , 2005, astro-ph/0509885.

[13]  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[14]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[15]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[16]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[17]  Ataru Tanikawa,et al.  Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters , 2013, 1307.6268.

[18]  Enrico Ramirez-Ruiz,et al.  Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections , 2017, 1706.03776.

[19]  Y. Zlochower,et al.  Close encounters of three black holes , 2007, 0710.0879.

[20]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[21]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[22]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[23]  S. Tremaine,et al.  Isotropic–Nematic Phase Transitions in Gravitational Systems , 2017, 1701.03271.

[24]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[25]  R. O. Hansen POST-NEWTONIAN GRAVITATIONAL RADIATION FROM POINT MASSES IN A HYPERBOLIC KEPLER ORBIT. , 1972 .

[26]  S. Tremaine,et al.  Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems , 2016, 1608.07642.

[27]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[28]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.

[29]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[30]  Aaron M. Geller,et al.  On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening , 2017, 1711.10494.

[31]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[32]  B. McKernan,et al.  MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES , 2015, 1511.00005.

[33]  Frans Pretorius,et al.  Numerical Relativity and Astrophysics , 2014, 1405.4840.

[34]  John N. Bahcall,et al.  Binary-single star scattering. I: Numerical experiments for equal masses , 1983 .

[35]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[36]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[37]  Chunglee Kim,et al.  Black hole binaries dynamically formed in globular clusters , 2017, 1703.01568.

[38]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[39]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[40]  C. Pankow,et al.  Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations , 2017, 1704.07379.

[41]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[42]  S. Tremaine,et al.  Resonant relaxation and the warp of the stellar disc in the Galactic Centre , 2010, 1006.0001.

[43]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[44]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[45]  P. Hut Binary-single-star scattering. III: Numerical experiments for equal-mass hard binaries , 1993 .

[46]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[47]  Bence Kocsis,et al.  Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections , 2017, 1705.10781.

[48]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[49]  M. Kamionkowski,et al.  Orbital eccentricities in primordial black hole binaries , 2016, 1606.07437.

[50]  B. Metzger,et al.  Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO , 2018, The Astrophysical Journal.

[51]  Alain Chenciner,et al.  Three body problem , 2007, Scholarpedia.

[52]  Chunglee Kim,et al.  Compact binaries ejected from globular clusters as gravitational wave sources , 2013, 1308.1641.

[53]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[54]  Hyung-Mok Lee,et al.  Gravitational radiation driven capture in unequal mass black hole encounters , 2017, 1701.01548.

[55]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[56]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[57]  V. Kalogera Spin-Orbit Misalignment in Close Binaries with Two Compact Objects , 1999, astro-ph/9911417.

[58]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[59]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[60]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[61]  Hyung-Mok Lee,et al.  Black hole binaries in galactic nuclei and gravitational wave sources , 2015, 1501.02717.

[62]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[63]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[64]  S. Privitera,et al.  Searching for Gravitational Waves from Compact Binaries with Precessing Spins , 2016, 1603.02444.

[65]  High Energy Collisions of Black Holes Numerically Revisited , 2015, 1506.06153.

[66]  Johan Samsing,et al.  Topology of black hole binary–single interactions , 2017, 1706.04672.

[67]  Christian Marchal,et al.  Three-body problem , 1984 .

[68]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[69]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[70]  P. Hut Binary-single star scattering. II: Analytic approximations for high velocity , 1983 .

[71]  S. Tremaine,et al.  A numerical study of vector resonant relaxation , 2014, 1406.1178.

[72]  UCSC,et al.  Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions , 2016, 1609.09114.

[73]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[74]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.