The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Re/aqueous electrolyte interfaces

[1]  Bok Ki Kim,et al.  Determination of the Langmuir adsorption isotherms of under- and over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Ir/aqueous electrolyte interfaces using the phase-shift method , 2005 .

[2]  Nam Y. Kim,et al.  Comment on: Langmuir adsorption isotherms of overpotentially deposited hydrogen at poly-Au and Rh/H2SO4 aqueous electrolyte interfaces. Qualitativeanalysis using the phase-shift method. Authors' reply , 2004 .

[3]  Jang H. Chun,et al.  Determination of the equilibrium constant and standard free energy of the over-potentially deposited hydrogen for the cathodic H2 evolution reaction at the Pt-Rh alloy electrode interface using the phase-shift method , 2003 .

[4]  Nam Y. Kim,et al.  Qualitative Analysis of the Frumkin Adsorption Isotherm of the Over-Potentially Deposited Hydrogen at the Poly-Ni/KOH Aqueous Electrolyte Interface Using the Phase-Shift Method , 2002 .

[5]  J. Graydon,et al.  Impedance Study of Nickel Cathode Reactivation by Vanadium during Hydrogen Evolution in Alkaline Water , 2002 .

[6]  Sang K. Jeon,et al.  The Phase-Shift Method for the Langmuir Adsorption Isotherms of Electroadsorbed Hydrogens for the Cathodic H 2 Evolution Reactions at the Poly-Pt Electrode Interfaces , 2002 .

[7]  N. Krstajić,et al.  On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism , 2001 .

[8]  Nam Y. Kim,et al.  The Langmuir adsorption isotherms of electroadsorbed hydrogens for the cathodic hydrogen evolution reactions at the Pt(100)/H2SO4 and LiOH aqueous electrolyte interfaces , 2001 .

[9]  B. Conway,et al.  Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics , 2000 .

[10]  A. Zolfaghari,et al.  Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4☆ , 1999 .

[11]  K. Ra,et al.  The Phase‐Shift Method for the Frumkin Adsorption Isotherms at the Pd / H 2 SO 4 and KOH Solution Interfaces , 1998 .

[12]  G. Jerkiewicz Hydrogen sorption ATIN electrodes , 1998 .

[13]  A. Zolfaghari,et al.  Energetics of the Underpotential Deposition of Hydrogen on Platinum Electrodes I. Absence of Coadsorbed Species , 1997 .

[14]  A. Zolfaghari,et al.  Hydrogen adsorption on Pt and Rh electrodes and blocking of adsorption sites by chemisorbed sulfur , 1997 .

[15]  A. Zolfaghari,et al.  Determination of the Energy of the Metal−Underpotential-Deposited Hydrogen Bond for Rhodium Electrodes , 1996 .

[16]  A. Zolfaghari,et al.  Comparison of Hydrogen Electroadsorption from the Electrolyte with Hydrogen Adsorption from the Gas Phase , 1996 .

[17]  S. Machado,et al.  The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption , 1994 .

[18]  P. Marcus,et al.  Effects of chemisorbed sulphur on the hydrogen adsorption and evolution on metal single crystal surfaces , 1991 .

[19]  F. Goodridge Electrochemical hydrogen technologies , 1991 .

[20]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[21]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[22]  M. Sluyters-Rehbach,et al.  The kinetics of the reduction of protons at polycrystalline and monocrystalline gold electrodes , 1984 .

[23]  R. Parsons,et al.  Comparison between the protonation of atomic hydrogen resulting in hydrogen evolution and in the protonic trapping of photoemitted electrons on gold electrodes , 1984 .

[24]  R. Armstrong,et al.  Impedance plane display of a reaction with an adsorbed intermediate , 1972 .

[25]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[26]  M. Byrne,et al.  The hydrogen- and deuterium-evolution reactions on gold in acid solutions , 1971 .