Exhumation of the southern transpressive Bucaramanga fault, eastern Cordillera of Colombia: Insights from detrital, quantitative thermochronology and geomorphology

[1]  M. Fox,et al.  Detrital Thermochronometry Reveals That the Topography Along the Antarctic Peninsula is Not a Pleistocene Landscape , 2020, Journal of Geophysical Research: Earth Surface.

[2]  C. Zuluaga,et al.  Present-day structural frame of the Santander Massif and Pamplona Wedge: The interaction of the Northern Andes , 2020 .

[3]  F. Audemard,et al.  Along-strike variations in recent tectonic activity in the Santander Massif: New insights on landscape evolution in the Northern Andes , 2020 .

[4]  Francesco Veneri,et al.  SLiX: A GIS Toolbox to Support Along-Stream Knickzones Detection through the Computation and Mapping of the Stream Length-Gradient (SL) Index , 2020, ISPRS Int. J. Geo Inf..

[5]  C. Zuluaga,et al.  Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America , 2020 .

[6]  B. Horton,et al.  Construction of the Eastern Cordillera of Colombia: Insights from the Sedimentary Record , 2020 .

[7]  K. Gallagher,et al.  A new approach to thermal history modelling with detrital low temperature thermochronological data , 2020, Earth and Planetary Science Letters.

[8]  M. Bernet,et al.  Recent tectonic activity along the Bucaramanga Fault System (Chicamocha River Canyon, Eastern Cordillera of Colombia): a geomorphological approach , 2019 .

[9]  C. Faccenna,et al.  Transpression and the build-up of the Cordillera: the example of the Bucaramanga fault (Eastern Cordillera, Colombia) , 2019, Journal of the Geological Society.

[10]  Velandia Patiño,et al.  Cinemática de las fallas mayores del Macizo de Santander - énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga , 2019 .

[11]  L. Schoenbohm,et al.  Base Level and Lithologic Control of Drainage Reorganization in the Sierra de las Planchadas, NW Argentina , 2019, Journal of Geophysical Research: Earth Surface.

[12]  M. Bermúdez,et al.  The transpressive southern termination of the Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis , 2018, Journal of Structural Geology.

[13]  P. Zeitler,et al.  Relict Topography Within the Hangay Mountains in Central Mongolia: Quantifying Long‐Term Exhumation and Relief Change in an Old Landscape , 2018, Tectonics.

[14]  M. Malusà,et al.  The Sedimentology of Detrital Thermochronology , 2018, Fission-Track Thermochronology and its Application to Geology.

[15]  Barry P. Kohn,et al.  Fission-Track Analysis: Field Collection, Sample Preparation and Data Acquisition , 2018, Fission-Track Thermochronology and its Application to Geology.

[16]  T. Schildgen,et al.  The Application of Low-Temperature Thermochronology to the Geomorphology of Orogenic Systems , 2018, Fission-Track Thermochronology and its Application to Geology.

[17]  H. Sinclair,et al.  Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology , 2018, Nature.

[18]  D. Scherler,et al.  Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques , 2017 .

[19]  Jorge Pedro Galve,et al.  Stream Length-gradient Hotspot and Cluster Analysis (SL-HCA) to fine-tune the detection and interpretation of knickzones on longitudinal profiles , 2017 .

[20]  E. Foufoula‐Georgiou,et al.  Scale-dependent erosional patterns in steady-state and transient-state landscapes , 2017, Science Advances.

[21]  J. Braun,et al.  Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands , 2017 .

[22]  Alexander C. Whittaker,et al.  Fluvial archives, a valuable record of vertical crustal deformation , 2017 .

[23]  C. Zuluaga,et al.  New fission-track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the Northern Andes, Colombia , 2017 .

[24]  J. Myre,et al.  Steady state, erosional continuity, and the topography of landscapes developed in layered rocks , 2017 .

[25]  A. Mora,et al.  Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America , 2016 .

[26]  M. Malusà,et al.  Hydraulic sorting and mineral fertility bias in detrital geochronology , 2016 .

[27]  Francisco J. Roldán,et al.  Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift? , 2015 .

[28]  Mauricio A. Bermúdez,et al.  A new Poissonian algorithm for the determination of fission-track ages , 2015, Comput. Geosci..

[29]  D. Stockli,et al.  Chapter 20: What Drives Orogenic Asymmetry in the Northern Andes?: A Case Study from the Apex of the Northern Andean Orocline , 2015 .

[30]  C. Faccenna,et al.  Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga-Santa Marta Fault, Colombia , 2015 .

[31]  Wolfgang Schwanghart,et al.  Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences , 2014 .

[32]  M. C. Taylor,et al.  Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes , 2013 .

[33]  D. Stockli,et al.  Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia , 2013 .

[34]  A. Mora,et al.  Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time , 2013 .

[35]  P. Beek,et al.  Strong tectonic and weak climatic control on exhumation rates in the Venezuelan Andes , 2013 .

[36]  S. Willett,et al.  Some analytical methods for converting thermochronometric age to erosion rate , 2013 .

[37]  K. Whipple,et al.  9.28 Bedrock Rivers , 2013 .

[38]  D. Stockli,et al.  Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia , 2012 .

[39]  A. Mora,et al.  Open-source archive of active faults for northwest South America , 2012 .

[40]  D. Stockli,et al.  Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia , 2012 .

[41]  P. V. Beek,et al.  Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE , 2012 .

[42]  Xavier Robert,et al.  Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low‐temperature thermochronology and numerical modeling , 2011 .

[43]  P. V. Beek,et al.  Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data , 2011 .

[44]  P. V. Beek,et al.  Asynchronous Miocene–Pliocene exhumation of the central Venezuelan Andes , 2011 .

[45]  M. Strecker,et al.  Tectonic controls on Cenozoic foreland basin development in the north‐eastern Andes, Colombia , 2010 .

[46]  D. Stockli,et al.  Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia , 2010 .

[47]  J. Braun,et al.  Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history — I: Theory and conceptual model , 2010 .

[48]  M. Strecker,et al.  Episodic orogenic front migration in the northern Andes: Constraints from low‐temperature thermochronology in the Eastern Cordillera, Colombia , 2009 .

[49]  José Vicente Pérez-Peña,et al.  Spatial analysis of stream power using GIS: SLk anomaly maps , 2009 .

[50]  G. Tucker,et al.  Decoding temporal and spatial patterns of fault uplift using transient river long profiles , 2008 .

[51]  M. Strecker,et al.  Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia , 2008 .

[52]  M. Pérez‐Gussinyé,et al.  Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry , 2008 .

[53]  L. Lonergan,et al.  Strike-slip deformation within the Colombian Andes , 2007, Geological Society, London, Special Publications.

[54]  A. Carter Chapter 33 Heavy Minerals and Detrital Fission-Track Thermochronology , 2007 .

[55]  A. Kammer,et al.  Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications , 2006 .

[56]  S. Cloetingh,et al.  Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models , 2006 .

[57]  P. Reiners,et al.  USING THERMOCHRONOLOGY TO UNDERSTAND OROGENIC EROSION , 2006 .

[58]  N. Snyder,et al.  Tectonics from topography: Procedures, promise, and pitfalls , 2006 .

[59]  J. Braun,et al.  Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data , 2006 .

[60]  K. Hodges,et al.  Downstream development of a detrital cooling-age signal: Insights from 40Ar/39Ar muscovite thermochronology in the Nepalese Himalaya , 2006 .

[61]  R. Allmendinger,et al.  Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes , 2005 .

[62]  J. Braun,et al.  Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China , 2005 .

[63]  J. Angelier,et al.  Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes , 2005 .

[64]  C. Montes,et al.  Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras Girardot area, Colombia , 2005 .

[65]  F. Velandia,et al.  The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia , 2005 .

[66]  J. Angelier,et al.  Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region , 2005 .

[67]  J. Spotila Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts , 2005 .

[68]  David Belton,et al.  Computational Tools for Low-Temperature Thermochronometer Interpretation , 2005 .

[69]  W. Sassi,et al.  Thermal and Kinematic Evolution of the Eastern Cordillera Fold and Thrust Belt, Colombia , 2004 .

[70]  M. Brandon,et al.  Detrital-zircon fission-track ages for the ''Hoh Formation'': Implications for late Cenozoic evolution of the Cascadia subduction wedge , 2004 .

[71]  Jean Braun,et al.  Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography , 2003 .

[72]  Luis Rivera,et al.  The 19 January 1995 Tauramena (Colombia) earthquake: geometry and stress regime , 2003 .

[73]  J. Braun Quantifying the effect of recent relief changes on age–elevation relationships , 2002 .

[74]  Harmen Bijwaard,et al.  Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia) , 2000 .

[75]  Kathleen M. Haller,et al.  Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions , 2000 .

[76]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .

[77]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[78]  A. Kammer Observaciones acerca de un Origen Transpresivo de la Cordillera Oriental , 1999 .

[79]  M. Brandon,et al.  Exhumation history of orogenic highlands determined by detrital fission-track thermochronology , 1999, Geological Society, London, Special Publications.

[80]  M. Brandon,et al.  Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State , 1998 .

[81]  M. Brandon Probability density plot for fission-track grain-age samples , 1996 .

[82]  A. B. Hayward,et al.  Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia , 1995 .

[83]  D. Roeder,et al.  Eastern Cordillera of Colombia: Jurassic-Neogene Crustal Evolution , 1995 .

[84]  C. Dengo,et al.  Structure of the Eastern Cordillera of Colombia: Implications for Trap Styles and Regional Tectonics , 1993 .

[85]  M. Brandon Decomposition of fission-track grain-age distributions , 1992 .

[86]  M. Brandon,et al.  Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. , 1992 .

[87]  B. Kohn,et al.  Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaiho Basin region of western Venezuela and eastern Colombia , 1984 .

[88]  J. Kellogg Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins , 1984 .

[89]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[90]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[91]  J. T. Hack,et al.  Stream-profile analysis and stream-gradient index , 1973 .

[92]  B. L. Welch ON THE COMPARISON OF SEVERAL MEAN VALUES: AN ALTERNATIVE APPROACH , 1951 .

[93]  J. H. Mackin CONCEPT OF THE GRADED RIVER , 1948 .

[94]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .