On the equivalence of nonlinear complementarity problems and least-element problems

Strictly pseudomonotoneZ-maps operating on Banach lattices are considered. Equivalence of complementarity problems and least-element problems is established under certain regularity and growth conditions. This extends a recent result by Riddell (1981) for strictly monotoneZ-maps to the pseudomonotone case. Some other problems equivalent to the above are discussed as well.

[1]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[2]  F. Browder Nonlinear monotone operators and convex sets in Banach spaces , 1965 .

[3]  Jong-Shi Pang,et al.  A Least-Element Theory of Solving Linear Complementarity Problems as Linear Programs , 1978, Math. Oper. Res..

[4]  S. Schaible,et al.  4. Application of Generalized Concavity to Economics , 1988 .

[5]  Jen-Chih Yao,et al.  Multi-valued variational inequalities with K-pseudomonotone operators , 1994 .

[6]  W. Rheinboldt On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows☆ , 1970 .

[7]  Siegfried Schaible,et al.  Characterizations of generalized monotone maps , 1993 .

[8]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[9]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[10]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[11]  R. C. Riddell,et al.  Equivalence of Nonlinear Complementarity Problems and Least Element Problems in Banach Lattices , 1981, Math. Oper. Res..

[12]  R. Cottle,et al.  On solving linear complementarity problems as linear programs , 1978 .

[13]  Michael A. H. Dempster,et al.  Equivalence of Linear Complementarity Problems and Linear Programs in Vector Lattice Hilbert Spaces , 1980 .

[14]  Kennan T. Smith,et al.  Linear Topological Spaces , 1966 .

[15]  S. Karamardian Generalized complementarity problem , 1970 .