Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics

We review some applications of fractional calculus developed by the author (partly in collaboration with others) to treat some basic problems in continuum and statistical mechanics. The problems in continuum mechanics concern mathematical modelling of viscoelastic bodies (Sect. 1), and unsteady motion of a particle in a viscous fluid, i.e. the Basset problem (Sect. 2). In the former analysis fractional calculus leads us to introduce intermediate models of viscoelasticity which generalize the classical spring-dashpot models. The latter analysis induces us to introduce a hydrodynamic model suitable to revisit in Sect. 3 the classical theory of the Brownian motion, which is a relevant topic in statistical mechanics. By the tools of fractional calculus we explain the long tails in the velocity correlation and in the displacement variance. In Sect. 4 we consider the fractional diffusion-wave equation, which is obtained from the classical diffusion equation by replacing the first-order time derivative by a fractional derivative of order $0< \beta <2$. Led by our analysis we express the fundamental solutions (the Green functions) in terms of two interrelated auxiliary functions in the similarity variable, which turn out to be of Wright type (see Appendix), and to distinguish slow-diffusion processes ($0 < \beta < 1$) from intermediate processes ($1 < \beta < 2$).

[1]  Francesco Mainardi,et al.  The Fractional Langevin Equation: Brownian Motion Revisited , 2008, 0806.1010.

[2]  Francesco Mainardi,et al.  Probability distributions generated by fractional diffusion equations , 2007, 0704.0320.

[3]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[4]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[5]  Bruce J. West,et al.  Fractional Diffusion Equation , 1999 .

[6]  R. Wong,et al.  Smoothing of Stokes's discontinuity for the generalized Bessel function. II , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Francesco Mainardi,et al.  Seismic pulse propagation with constant Q and stable probability distributions , 1997, 1008.1341.

[8]  Alexander Lion,et al.  On the thermodynamics of fractional damping elements , 1997 .

[9]  Marina V. Shitikova,et al.  APPLICATION OF FRACTIONAL OPERATORS TO THE ANALYSIS OF DAMPED VIBRATIONS OF VISCOELASTIC SINGLE-MASS SYSTEMS , 1997 .

[10]  Hans Engler,et al.  Similarity solutions for a class of hyperbolic integrodifferential equations , 1997, Differential and Integral Equations.

[11]  M. Caputo Modern rheology and electric induction: multivalued index of refraction, splitting of eigenvalues and fatigue , 1996 .

[12]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[13]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[14]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[15]  Asa Fenander,et al.  Modal synthesis when modeling damping by use of fractional derivatives , 1996 .

[16]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[17]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[18]  John F. Brady,et al.  The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number , 1995, Journal of Fluid Mechanics.

[19]  Asa Fenander,et al.  Modal synthesis when modelling damping by use of fractional derivatives , 1995 .

[20]  Renwei Mei,et al.  Long-time behaviour of the drag on a body in impulsive motion , 1995, Journal of Fluid Mechanics.

[21]  R. Metzler,et al.  Fractional model equation for anomalous diffusion , 1994 .

[22]  Francesco Mainardi,et al.  Fractional relaxation in anelastic solids , 1994 .

[23]  W. Glöckle,et al.  Fractional relaxation and the time-temperature superposition principle , 1994 .

[24]  N. Heymans,et al.  Fractal rheological models and fractional differential equations for viscoelastic behavior , 1994 .

[25]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[26]  J. Brady,et al.  The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number , 1993, Journal of Fluid Mechanics.

[27]  Nicos Makris,et al.  Models of Viscoelasticity with Complex‐Order Derivatives , 1993 .

[28]  Renwei Mei,et al.  History force on a sphere due to a step change in the free-stream velocity , 1993 .

[29]  C. Friedrich Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model , 1993 .

[30]  Schram,et al.  Brownian particles in shear flow and harmonic potentials: A study of long-time tails. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[31]  Massimiliano Giona,et al.  Fractional diffusion equation for transport phenomena in random media , 1992 .

[32]  Wang Long-time-correlation effects and biased anomalous diffusion. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[33]  W. Glöckle,et al.  A fractional model for mechanical stress relaxation , 1991 .

[34]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[35]  Roberto Monaco,et al.  Waves and Stability in Continuous Media , 1991 .

[36]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[37]  D. Ramkrishna,et al.  ANOMALOUS DIFFUSION: A DYNAMIC PERSPECTIVE , 1990 .

[38]  James M. Kelly,et al.  Application of fractional derivatives to seismic analysis of base‐isolated models , 1990 .

[39]  藤田 安啓,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION II(Martingales and Related Topics) , 1989 .

[40]  F. Tatom The Basset term as a semiderivative , 1988 .

[41]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[42]  W. Wyss The fractional diffusion equation , 1986 .

[43]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[44]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[45]  M. Caputo Generalized rheology and geophysical consequences , 1985 .

[46]  S. McKee,et al.  The dispersive effects of Basset history forces on particle motion in a turbulent flow , 1984 .

[47]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[48]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[49]  Lynn Rogers,et al.  Operators and Fractional Derivatives for Viscoelastic Constitutive Equations , 1983 .

[50]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[51]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[52]  S. McKee,et al.  Product Integration Methods for the Nonlinear Basset Equation , 1983 .

[53]  G L Paul,et al.  Observation of a long-time tail in Brownian motion , 1981 .

[54]  M. Warner The long-time fluctuations of a Brownian sphere , 1979 .

[55]  Michael Stiassnie,et al.  On the application of fractional calculus for the formulation of viscoelastic models , 1979 .

[56]  Michele Caputo,et al.  A model for the fatigue in elastic materials with frequency independent Q , 1979 .

[57]  R. Fox,et al.  Gaussian stochastic processes in physics , 1978 .

[58]  B. U. Felderhof On the derivation of the fluctuation-dissipation theorem , 1978 .

[59]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[60]  Pierre Resibois,et al.  Time dependent correlation functions and mode-mode coupling theories , 1975 .

[61]  M. Caputo Vibrations of an infinite viscoelastic layer with a dissipative memory , 1974 .

[62]  Dick Bedeaux,et al.  Brownian motion and fluctuating hydrodynamics , 1974 .

[63]  Lokenath Debnath,et al.  Introduction to the Theory and Application of the Laplace Transformation , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[64]  H. Szu,et al.  Fluctuation‐dissipation theorems on the basis of hydrodynamic propagators , 1974 .

[65]  J. Dufty Gaussian model for fluctuation of a Brownian particle , 1974 .

[66]  H. Davis,et al.  Velocity fluctuations of a Brownian particle: Widom's model , 1973 .

[67]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[68]  J. Keizer Comment on the effect of inertia on Brownian motion , 1973 .

[69]  J. Hynes On Hydrodynamic Models for Brownian Motion , 1972 .

[70]  M. Nelkin Inertial Effects in Motion Driven by Hydrodynamic Fluctuations , 1972 .

[71]  Y. Pomeau Low-Frequency Behavior of Transport Coefficients in Fluids , 1972 .

[72]  J. Hermans,et al.  Effect of Inertia on the Brownian Motion of Rigid Particles in a Viscous Fluid , 1972 .

[73]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[74]  K. Case Velocity Fluctuations of a Body in a Fluid , 1971 .

[75]  R. Mazo Theory of Brownian Motion. IV. A Hydrodynamic Model for the Friction Factor , 1971 .

[76]  A. Widom Velocity Fluctuations of a Hard-Core Brownian Particle , 1971 .

[77]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[78]  R. Zwanzig,et al.  Hydrodynamic Theory of the Velocity Correlation Function , 1971, Berichte der Bunsengesellschaft für physikalische Chemie.

[79]  Jonathan Robert Dorfman,et al.  Velocity Correlation Functions in Two and Three Dimensions , 1970 .

[80]  J. M. J. van Leeuwen,et al.  Asymptotic Time Behavior of Correlation Functions , 1970 .

[81]  Robert Zwanzig,et al.  Hydrodynamic Theory of the Velocity Correlation Function , 1970 .

[82]  W. Smit,et al.  Rheological models containing fractional derivatives , 1970 .

[83]  Kyozi Kawasaki,et al.  Long time behavior of the velocity autocorrelation function , 1970 .

[84]  G. Uhlenbeck,et al.  Contributions to Non‐Equilibrium Thermodynamics. I. Theory of Hydrodynamical Fluctuations , 1970 .

[85]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[86]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[87]  A. Zemanian,et al.  Distribution theory and transform analysis , 1966 .

[88]  Fuat Odar,et al.  Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid , 1966, Journal of Fluid Mechanics.

[89]  Wallis S. Hamilton,et al.  Forces on a sphere accelerating in a viscous fluid , 1964, Journal of Fluid Mechanics.

[90]  N. Wax,et al.  Selected Papers on Noise and Stochastic Processes , 1955 .

[91]  J. Ferry,et al.  Mathematical Structure of the Theories of Viscoelasticity , 1955 .

[92]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[93]  G. W. Scott-Blair A survey of general and applied rheology , 1951 .

[94]  V. Harrison Survey of general and applied rheology , 1950 .

[95]  W. Hume-rothery Elasticity and Anelasticity of Metals , 1949, Nature.

[96]  A. Gemant,et al.  XLV. On fractional differentials , 1938 .

[97]  A. B. BASSET,et al.  The Descent of a Sphere in a Viscous Liquid , 1910, Nature.

[98]  R. Wong,et al.  Smoothing of Stokes' discontinuity for the generalized Bessel function , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[99]  Francesco Mainardi,et al.  Fractional calculus and stable probability distributions , 1998 .

[100]  Rolf E. Hummel,et al.  Alloys and Compounds , 1998 .

[101]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[102]  Francesco Mainardi,et al.  The time fractional diffusion-wave equation , 1995 .

[103]  Horst R. Beyer,et al.  Definition of physically consistent damping laws with fractional derivatives , 1995 .

[104]  F. R. Norwood,et al.  IUTAM symposium : nonlinear waves in solids , 1995 .

[105]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[106]  E. Bonetti,et al.  The application of real-order derivatives in linear viscoelasticity , 1988 .

[107]  L. Reichl Translational Brownian motion in a fluid with internal degrees of freedom , 1981 .

[108]  Iu.N. Rabotnov Elements of hereditary solid mechanics , 1980 .

[109]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[110]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[111]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[112]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[113]  J. Mikusiński,et al.  On the function whose Laplace-transform is $e^{-s^{α}} , 1959 .

[114]  G. W. Scott Blair,et al.  VI. An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations , 1949 .

[115]  E. Wright THE GENERALIZED BESSEL FUNCTION OF ORDER GREATER THAN ONE , 1940 .

[116]  E. Wright On the Coefficients of Power Series Having Exponential Singularities , 1933 .