A simple metllod for testing goodness of fit in tile presence of nuisance parameters
暂无分享,去创建一个
[1] J. Neyman. »Smooth test» for goodness of fit , 1937 .
[2] T. W. Anderson,et al. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .
[3] E. S. Pearson. Biometrika tables for statisticians , 1967 .
[4] D. Darling,et al. The Cramer-Smirnov Test in the Parametric Case , 1955 .
[5] D. E. Barton. Neyman's test of goodness of fit when the null hypothesis is composite , 1956 .
[6] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[7] Giitiro Suzuki. Kolmogorov-Smirnov Tests of Fit Based on Some General Bounds , 1968 .
[8] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .
[9] M. B. Wilk,et al. An Analysis of Variance Test for the Exponential Distribution (Complete Samples) , 1972 .
[10] James Durbin,et al. Weak convergence of the sample distribution function when parameters are estimated , 1973 .
[11] J. Durbin. Distribution theory for tests based on the sample distribution function , 1973 .
[12] James Durbin,et al. Kolmogorov-smirnov tests when parameters are estimated , 1976 .
[13] A. A. Mogul'skii. Remarks on Large Deviations for the $\omega ^2 $ Statistics , 1977 .
[14] G. Neuhaus. Asymptotic Theory of Goodness of Fit Tests when Parameters are Present:A Surrey 1 , 1979 .
[15] David Pollard,et al. The minimum distance method of testing , 1980 .