NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES.

Graphical models are frequently used to explore networks, such as genetic networks, among a set of variables. This is usually carried out via exploring the sparsity of the precision matrix of the variables under consideration. Penalized likelihood methods are often used in such explorations. Yet, positive-definiteness constraints of precision matrices make the optimization problem challenging. We introduce non-concave penalties and the adaptive LASSO penalty to attenuate the bias problem in the network estimation. Through the local linear approximation to the non-concave penalty functions, the problem of precision matrix estimation is recast as a sequence of penalized likelihood problems with a weighted L(1) penalty and solved using the efficient algorithm of Friedman et al. (2008). Our estimation schemes are applied to two real datasets. Simulation experiments and asymptotic theory are used to justify our proposed methods.

[1]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[2]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[5]  Jianqing Fan,et al.  Comments on «Wavelets in statistics: A review» by A. Antoniadis , 1997 .

[6]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[7]  G. Hortobagyi,et al.  Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[9]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[10]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .

[11]  R. Kohn,et al.  Efficient estimation of covariance selection models , 2003 .

[12]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[13]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[14]  M. Drton,et al.  Model selection for Gaussian concentration graphs , 2004 .

[15]  N. Meinshausen,et al.  Consistent neighbourhood selection for sparse high-dimensional graphs with the Lasso , 2004 .

[16]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[17]  Haipeng Shen,et al.  Analysis of call centre arrival data using singular value decomposition , 2005 .

[18]  A. Jemal,et al.  Cancer Statistics, 2005 , 2005, CA: a cancer journal for clinicians.

[19]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[20]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[21]  Hongzhe Li,et al.  Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. , 2006, Biostatistics.

[22]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[23]  H. Iwase,et al.  [Breast cancer]. , 2006, Nihon rinsho. Japanese journal of clinical medicine.

[24]  J. Ross,et al.  Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[26]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Maximum Likelihood Estimation , 2007, ArXiv.

[27]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[28]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[29]  Jianqing Fan,et al.  High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.

[30]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[31]  Adam J. Rothman,et al.  Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.

[32]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[33]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[34]  Jianqing Fan,et al.  COMMENTS ON « WAVELETS IN STATISTICS : A REVIEW , 2009 .

[35]  Network exploration via the adaptive LASSO and SCAD penalties , 2009 .

[36]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.