A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes

Abstract A new approach of linear triangular finite element method (FEM) is developed for nonlinear BBM equation on anisotropic meshes. Based on the superclose estimate between the interpolation and Ritz projection of this element together with post-processing technique, the superclose and superconvergence results are derived for the semi-discrete and Crank–Nicolson fully-discrete schemes. Finally, a numerical example is carried out to demonstrate the theoretical analysis.

[1]  Dongyang Shi,et al.  Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .

[2]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Khaled Omrani,et al.  A fully Galerkin method for the damped generalized regularized long‐wave (DGRLW) equation , 2009 .

[4]  Jerome A. Goldstein,et al.  Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions , 1985 .

[5]  Yi-Tian Gao,et al.  On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics , 2002 .

[6]  Jerome A. Goldstein,et al.  On the Benjamin-Bona-Mahony equation in higher dimensions , 1980 .

[7]  T. Achouri,et al.  On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation , 2006, Appl. Math. Comput..

[8]  Khaled Omrani,et al.  The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation , 2006, Appl. Math. Comput..

[9]  Yong Chen,et al.  Exact solutions for two nonlinear wave equations with nonlinear terms of any order , 2005 .

[10]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[11]  R. Kannan,et al.  Finite difference approximate solutions for the two-dimensional Burgers' system , 2002 .

[12]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[13]  Khaled Omrani,et al.  Finite difference discretization of the Benjamin‐Bona‐Mahony‐Burgers equation , 2008 .

[14]  Chao Xu,et al.  Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..

[15]  J. Bona,et al.  The initial-value problem for the Korteweg-de Vries equation , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  Dongyang Shi,et al.  Anisotropic interpolations with application to nonconforming elements , 2004 .

[17]  Shi Dong-yang,et al.  The Superconvergence Analysis of Linear Triangular Element on Anisotropic Meshes , 2007 .