A quantum coherent spin in a two-dimensional material at room temperature

Quantum networks and sensing require solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration, ideally at ambient conditions. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here, we report quantum coherent control under ambient conditions of a single-photon emitting defect spin in a a two-dimensional material, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is governed predominantly by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results allow for a room-temperature spin qubit coupled to a multi-qubit quantum register or quantum sensor with nanoscale sample proximity.

[1]  Z. Benedek,et al.  Symmetric carbon tetramers forming chemically stable spin qubits in hBN , 2023, 2303.14110.

[2]  S. F. Covre da Silva,et al.  Ideal refocusing of an optically active spin qubit under strong hyperfine interactions , 2022, Nature Nanotechnology.

[3]  R. Ruoff,et al.  Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) , 2022, Nature.

[4]  Kenji Watanabe,et al.  Site-Specific Fabrication of Blue Quantum Emitters in Hexagonal Boron Nitride , 2022, ACS Photonics.

[5]  D. Awschalom,et al.  Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control , 2022, Physical Review X.

[6]  A. Ramsay,et al.  Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance. , 2021, Nano letters.

[7]  Á. Gali,et al.  Quantum sensor in a single layer van der Waals material , 2021, 2111.09589.

[8]  C. Degen,et al.  Nanoscale magnetic field imaging for 2D materials , 2021, Nature Reviews Physics.

[9]  I. Aharonovich,et al.  Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors , 2021, Nature Communications.

[10]  V. Zwiller,et al.  Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide , 2021, Advanced Quantum Technologies.

[11]  D. Awschalom,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[12]  S. Simmons,et al.  Optical observation of single spins in silicon , 2021, Nature.

[13]  Laura dos Santos Martins,et al.  Realization of a multinode quantum network of remote solid-state qubits , 2021, Science.

[14]  I. Aharonovich,et al.  Room temperature coherent control of spin defects in hexagonal boron nitride , 2020, Science Advances.

[15]  D. Awschalom,et al.  Probing the Coherence of Solid-State Qubits at Avoided Crossings , 2020, 2010.11077.

[16]  J. E. Castellanos-Águila,et al.  First-Principles Identification of Single Photon Emitters Based on Carbon Clusters in Hexagonal Boron Nitride. , 2020, The journal of physical chemistry. A.

[17]  Á. Gali,et al.  Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride , 2020, npj Computational Materials.

[18]  Igor Aharonovich,et al.  Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature , 2019, Nature Materials.

[19]  K. Fu,et al.  Quantum defects by design , 2019, Nanophotonics.

[20]  E. Denning,et al.  Optical spin locking of a solid-state qubit , 2019, npj Quantum Information.

[21]  P. Lam,et al.  Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride , 2019, ACS Photonics.

[22]  A. Morpurgo,et al.  Probing magnetism in 2D materials at the nanoscale with single-spin microscopy , 2019, Science.

[23]  E. Denning,et al.  Quantum interface of an electron and a nuclear ensemble , 2018, Science.

[24]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[25]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[26]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[27]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[28]  Simon Schmitt,et al.  Qudi: A modular python suite for experiment control and data processing , 2016, SoftwareX.

[29]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[30]  D. Awschalom,et al.  Quantum decoherence dynamics of divacancy spins in silicon carbide , 2016, Nature Communications.

[31]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[32]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[33]  D. Awschalom,et al.  Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble , 2015, Science Advances.

[34]  M. Dresselhaus,et al.  Synthesis of large-area multilayer hexagonal boron nitride for high material performance , 2015, Nature Communications.

[35]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  T. Gacoin,et al.  Photophysics of single nitrogen-vacancy centers in diamond nanocrystals , 2015, 1501.03714.

[37]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[38]  I. Gerhardt,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature materials.

[39]  Takeshi Ohshima,et al.  Isolated electron spins in silicon carbide with millisecond coherence times. , 2014, Nature materials.

[40]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[41]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[42]  M. Atature,et al.  Observing bulk diamond spin coherence in high-purity nanodiamonds , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[43]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[44]  Philip R. Hemmer,et al.  Nitrogen-vacancy centers: Physics and applications , 2013 .

[45]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[46]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[47]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[48]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[49]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[50]  J. Roch,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011, 1108.0178.

[51]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[52]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[53]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[54]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[55]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[56]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[57]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[58]  E.,et al.  Relaxation Effects in Nuclear Magnetic Resonance , 2022 .