Unexpected Decarbonylation of Acylethynylpyrroles under the Action of Cyanomethyl Carbanion: A Robust Access to Ethynylpyrroles

It has been found that the addition of CH2CN− anion to the carbonyl group of acylethynylpyrroles, generated from acetonitrile and t-BuOK, results in the formation of acetylenic alcohols, which undergo unexpectedly easy (room temperature) decomposition to ethynylpyrroles and cyanomethylphenylketones (retro-Favorsky reaction). This finding allows a robust synthesis of ethynylpyrroles in up to 95% yields to be developed. Since acylethynylpyrroles became available, the strategy thus found makes ethynylpyrroles more accessible than earlier. The quantum-chemical calculations (B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/acetonitrile) confirm the thermodynamic preference of the decomposition of the intermediate acetylenic alcohols to free ethynylpyrroles rather than their potassium derivatives.

[1]  Jianbo Tang,et al.  Regioselective Cycloaddition and Substitution Reaction of Tertiary Propargylic Alcohols and Heteroareneboronic Acids via Acid Catalysis. , 2022, Organic letters.

[2]  Xian‐Rong Song,et al.  Recent advances in the direct transformation of propargylic alcohols to allenes , 2021, Organic Chemistry Frontiers.

[3]  Shouping Liu,et al.  Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation , 2020 .

[4]  Xian‐Rong Song,et al.  Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols , 2020, Advanced Synthesis & Catalysis.

[5]  Yun‐Lin Liu,et al.  Tandem Annulations of Propargylic Alcohols to Indole Derivatives , 2020 .

[6]  Chaofan Huang,et al.  Chiral tertiary propargylic alcohols via Pd-catalyzed carboxylative kinetic resolution , 2020 .

[7]  B. Trofimov,et al.  Self-Assembly of N-Phenyl-2,5-dimethylpyrrole from Acetylene and Aniline in KOH/DMSO and KOBut/DMSO Superbase Systems: A Quantum-Chemical Insight. , 2020, The Journal of organic chemistry.

[8]  B. Trofimov,et al.  Recent Strides in the Transition Metal-Free Cross-Coupling of Haloacetylenes with Electron-Rich Heterocycles in Solid Media , 2020, Molecules.

[9]  H. Qian,et al.  2‐Propargyl Alcohols in Organic Synthesis , 2019, Advanced Synthesis & Catalysis.

[10]  C. Risko,et al.  Near-Infrared-Absorbing Indolizine-Porphyrin Push-Pull Dye for Dye-Sensitized Solar Cells. , 2019, ACS applied materials & interfaces.

[11]  Hyemi Lee,et al.  Encapsulation of dihydrogenphosphate ions as a cyclic dimer to the cavities of site-specifically modified indolocarbazole-pyridine foldamers , 2019, Organic Chemistry Frontiers.

[12]  Motofumi Miura,et al.  Stereoselective synthesis of secondary and tertiary propargylic alcohols induced by a chiral sulfoxide auxiliary , 2019, Tetrahedron Letters.

[13]  S. Saha,et al.  Scope and advances in the catalytic propargylic substitution reaction , 2018, RSC advances.

[14]  Jason Y. C. Lim,et al.  A pyrrole-containing cleft-type halogen bonding receptor for oxoanion recognition and sensing in aqueous solvent media , 2018 .

[15]  B. Hoff,et al.  Acetonitrile as a Building Block and Reactant , 2018, Synthesis.

[16]  N. Kumagai,et al.  Catalytic Asymmetric Synthesis of α‐Trifluoromethylated Carbinols: A Case Study of Tertiary Propargylic Alcohols , 2018 .

[17]  B. Trofimov,et al.  Transition metal-free cross-coupling of furan ring with haloacetylenes , 2018, Tetrahedron.

[18]  T. Doi,et al.  Facile Synthesis of Pyrrolyl 4-Quinolinone Alkaloid Quinolactacide by 9-AJ-Catalyzed Tandem Acyl Transfer–Cyclization of o-Alkynoylaniline Derivatives , 2017, ACS omega.

[19]  Yalin Tang,et al.  Cycloisomerization of Pyridine‐Substituted Propargylic Alcohols or Esters To Construct Indolizines and Indolizinones , 2017 .

[20]  K. Krishnamoorthy,et al.  Site-selective synthesis and characterization of BODIPY–acetylene copolymers and their transistor properties , 2016 .

[21]  B. Trofimov,et al.  N-Vinyl-2-(trifluoroacetylethynyl)pyrroles and E-2-(1-bromo-2-trifluoroacetylethenyl)pyrroles: Cross-coupling vs. addition during CH-functionalization of pyrroles with bromotrifluoroacetylacetylene in solid Al2O3 medium. H-bonding control , 2016 .

[22]  L. Zu,et al.  An Indoxyl-Based Strategy for the Synthesis of Indolines and Indolenines. , 2015, Angewandte Chemie.

[23]  L. Jean‐Gérard,et al.  Bis-triazolyl BODIPYs: a simple dye with strong red-light emission , 2015 .

[24]  Yadagiri Thummala,et al.  The Dual Role of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in the Synthesis of Terminal Aryl- and Styryl-Acetylenes via Umpolung Reactivity. , 2015, Organic letters.

[25]  Dongho Kim,et al.  β-Octamethoxy-Substituted 22π and 26π Stretched Porphycenes: Synthesis, Characterization, Photodynamics, and Nonlinear Optical Studies. , 2015, Chemistry.

[26]  Yuya Tanaka,et al.  Synthesis and properties of diiron complexes with heteroaromatic linkers: An approach for modulation of organometallic molecular wire , 2015 .

[27]  Hongyan Li,et al.  A Novel and Practical Synthesis of Ramelteon , 2015 .

[28]  B. Trofimov,et al.  From 4,5,6,7-tetrahydroindoles to 3- or 5-(4,5,6,7-tetrahydroindol-2-yl)isoxazoles in two steps: a regioselective switch between 3- and 5-isomers , 2014 .

[29]  J. Gupton,et al.  Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles. , 2013, Tetrahedron.

[30]  B. Trofimov,et al.  Cross-coupling of 4,5,6,7-tetrahydroindole with functionalized haloacetylenes on active surfaces of metal oxides and salts , 2010 .

[31]  J. Sessler,et al.  A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. , 2010, Journal of the American Chemical Society.

[32]  G. Dudley,et al.  The Meyer-Schuster rearrangement for the synthesis of alpha,beta-unsaturated carbonyl compounds. , 2009, Organic & biomolecular chemistry.

[33]  S. Tarasov,et al.  Ethynylindoles and their derivatives. Methods of synthesis and chemical transformations (review) , 2009 .

[34]  A. Frontier,et al.  Formal synthesis of (+/-)-roseophilin. , 2009, Organic letters.

[35]  H. Mcnab,et al.  1-Methoxycarbonylpyrrolizin-3-one and related compounds. , 2009, Organic & biomolecular chemistry.

[36]  E. Kawahara,et al.  Synthesis and inhibitory activity of 4-alkynyl and 4-alkenylquinazolines: identification of new scaffolds for potent EGFR tyrosine kinase inhibitors. , 2007, Bioorganic & medicinal chemistry letters.

[37]  B. Trofimov,et al.  Ethynylation of indoles with 1-benzoyl-2-bromoacetylene on Al2O3 , 2006 .

[38]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[39]  E. Ko,et al.  Additions of Acetonitrile and Chloroform to Aromatic Aldehydes in the Presence of Tetrabutylammonium Fluoride , 2006 .

[40]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[41]  Takakazu Yamamoto,et al.  New Alternative Donor−Acceptor Arranged Poly(Aryleneethynylene)s and Their Related Compounds Composed of Five-Membered Electron-Accepting 1,3,4-Thiadiazole, 1,2,4-Triazole, or 3,4-Dinitrothiophene Units: Synthesis, Packing Structure, and Optical Properties , 2005 .

[42]  B. Trofimov,et al.  Ethynylation of pyrroles with 1-acyl-2-bromoacetylenes on alumina: a formal ‘inverse Sonogashira coupling’ , 2004 .

[43]  D. Lightner,et al.  Novel Linear Tetrapyrroles: Hydrogen Bonding in Diacetylenic Bilirubins , 2004 .

[44]  A. Samat,et al.  Synthesis and photochromic behaviour of new dipyrrolylperfluorocyclopentenes , 2003 .

[45]  B. Trofimov,et al.  N- and C-vinylation of pyrroles with disubstituted activated acetylenes , 2003 .

[46]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[47]  P. Chou,et al.  2,7-Bis(1H-pyrrol-2-yl)ethynyl-1,8-naphthyridine: an ultrasensitive fluorescent probe for glucopyranoside. , 2002, Organic letters.

[48]  J. Cioslowski Quantum-mechanical prediction of thermochemical data , 2002 .

[49]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[50]  P. Gmeiner,et al.  Piperidinylpyrroles: design, synthesis and binding properties of novel and selective dopamine D4 receptor ligands. , 1999, Bioorganic & medicinal chemistry letters.

[51]  E. Negishi,et al.  Direct synthesis of heteroarylethynes via palladium-catalyzed coupling of heteroaryl halides with ethynylzinc halides. Its application to an efficient synthesis of a thiophenelactone from Chamaemelum nobile L , 1997 .

[52]  K. Heitmann,et al.  SYNTHESIS OF N-PROTECTED 2-HYDROXYMETHYLPYRROLES AND TRANSFORMATION INTO ACYCLIC OLIGOMERS , 1996 .

[53]  S. Parsons,et al.  Synthesis and unexpectedly facile dimerisation of 1-methoxycarbonylpyrrolizin-3-one , 1996 .

[54]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[55]  R. Negri,et al.  Photophysics and photochemistry of 22.pi. and 26.pi. acetylene-cumulene porphyrinoids , 1992 .

[56]  L. Fedenok,et al.  A method for the preparation of terminal acetylenes , 1990 .

[57]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[58]  R. Jones,et al.  Flash vacuum pyrolysis of 5-(indol-2- and -3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-diones , 1986 .

[59]  J. Normant,et al.  Une nouvelle preparation du fluoroacetylene - sa reaction avec les organometalliques. Synthese d'alcynes et d'enynes divers , 1982 .

[60]  S. F. Vasilevskii,et al.  Synthesis of acetylenyl-N-methylpyrroles , 1980 .

[61]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[62]  C. Wentrup,et al.  A General and Facile Synthesis of Aryl‐ and Hetero‐arylacetylenes , 1978 .

[63]  H. Wasserman Organic Chemistry: A Series of Monographs , 1971 .

[64]  A. Uchida,et al.  Reaction of Acetonitrile with Carboxylic Esters , 1970 .