Discrete non-parametric kernel estimation for global sensitivity analysis

This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output.

[1]  E. Nadaraya On Estimating Regression , 1964 .

[2]  C. C. Kokonendji,et al.  On semiparametric regression for count explanatory variables , 2012 .

[3]  Paolo Trucco,et al.  A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation , 2008, Reliab. Eng. Syst. Saf..

[4]  C. C. Kokonendji,et al.  Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions , 2010 .

[5]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[6]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[7]  Zhenzhou Lu,et al.  Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis , 2014, Reliab. Eng. Syst. Saf..

[8]  Peter C. Young,et al.  State Dependent Parameter metamodelling and sensitivity analysis , 2007, Comput. Phys. Commun..

[9]  Anne Ventura,et al.  Sensitivity Analysis of Environmental Process Modeling in a Life Cycle Context: A Case Study of Hemp Crop Production , 2015 .

[10]  C. C. Kokonendji,et al.  Discrete triangular distributions and non-parametric estimation for probability mass function , 2007 .

[11]  Henri E. Cuny,et al.  On Modeling Wood Formation Using Parametric and Semiparametric Regressions for Count Data , 2016, Commun. Stat. Simul. Comput..

[12]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[13]  Stefan Finsterle,et al.  Site characterization of the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste , 2012, Reliab. Eng. Syst. Saf..

[14]  C. C. Kokonendji,et al.  Discrete associated kernels method and extensions , 2011 .