Semi-supervised kernel canonical correlation analysis with application to human fMRI

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[5]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[7]  B. Silverman,et al.  Canonical correlation analysis when the data are curves. , 1993 .

[8]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[9]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[10]  J. Dauxois,et al.  Nonlinear canonical analysis and independence tests , 1998 .

[11]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[12]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[13]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[14]  Yoshihiro Yamanishi,et al.  Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis , 2003, ISMB.

[15]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[16]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[17]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[18]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[19]  Andreas Bartels,et al.  The chronoarchitecture of the human brain—natural viewing conditions reveal a time-based anatomy of the brain , 2004, NeuroImage.

[20]  S. Zeki,et al.  Functional brain mapping during free viewing of natural scenes , 2004, Human brain mapping.

[21]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[22]  Tijl De Bie,et al.  Semi-supervised learning based on kernel methods and graph cut algorithms , 2005 .

[23]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[24]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[25]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[26]  John Shawe-Taylor,et al.  Using KCCA for Japanese–English cross-language information retrieval and document classification , 2006, Journal of Intelligent Information Systems.

[27]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[28]  Ulrike von Luxburg,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2006, J. Mach. Learn. Res..

[29]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[30]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[31]  Janaina Mourão Miranda,et al.  Unsupervised analysis of fMRI data using kernel canonical correlation , 2007, NeuroImage.

[32]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[33]  Christoph H. Lampert,et al.  Correlational spectral clustering , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Christoph H. Lampert,et al.  Semi-supervised Laplacian Regularization of Kernel Canonical Correlation Analysis , 2008, ECML/PKDD.

[35]  N. Logothetis,et al.  Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. , 2008, Cerebral cortex.

[36]  Arthur Gretton,et al.  Comparison of Pattern Recognition Methods in Classifying High-resolution Bold Signals Obtained at High Magnetic Field in Monkeys , 2008 .

[37]  Andreas Bartels,et al.  Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity , 2009, NIPS.

[38]  J. Ramírez,et al.  SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting , 2009, Neuroscience Letters.

[39]  Joshua M. Lewis,et al.  Multi-view kernel construction , 2010, Machine Learning.

[40]  Juan Manuel Górriz,et al.  SPECT image classification using random forests , 2009 .

[41]  Klaus-Robert Müller,et al.  Temporal kernel CCA and its application in multimodal neuronal data analysis , 2010, Machine Learning.

[42]  W. Hsieh Machine Learning Methods in the Environmental Sciences: Nonlinear canonical correlation analysis , 2009 .