Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood.

[1]  T. Arndt Crystal , 2019, Springer Reference Medizin.

[2]  O. Boespflug-Tanguy,et al.  Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients. , 2017, Molecular genetics and metabolism.

[3]  Maojun Yang,et al.  Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2 , 2017, Cell.

[4]  T. Rouault,et al.  Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways , 2017, The Journal of Biological Chemistry.

[5]  R. Lill,et al.  Iron–sulfur cluster biogenesis and trafficking in mitochondria , 2017, The Journal of Biological Chemistry.

[6]  R. Handsaker,et al.  Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations , 2017, Nature.

[7]  M. Lovell,et al.  Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly , 2016, Human molecular genetics.

[8]  N. Matsumoto,et al.  De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux , 2016, Journal of Human Genetics.

[9]  Mugdha Joshi,et al.  Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease , 2016, Cold Spring Harbor molecular case studies.

[10]  A. Mégarbané,et al.  Reply: Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. , 2016, Brain : a journal of neurology.

[11]  Kristopher L. Nazor,et al.  Whole-genome mutational burden analysis of three pluripotency induction methods , 2016, Nature Communications.

[12]  I. Helbig,et al.  Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy , 2016, Genetics in Medicine.

[13]  E. Shoubridge,et al.  Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. , 2016, Brain : a journal of neurology.

[14]  Daniel Poveda-Huertes,et al.  The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover , 2016, Cell and Tissue Research.

[15]  R. Zahedi,et al.  Quantitative Profiling for Substrates of the Mitochondrial Presequence Processing Protease Reveals a Set of Nonsubstrate Proteins Increased upon Proteotoxic Stress. , 2015, Journal of proteome research.

[16]  A. Ryo,et al.  Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome. , 2015, American journal of human genetics.

[17]  D. Valle,et al.  GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene , 2015, Human mutation.

[18]  Robert W. Taylor,et al.  Mutations causing mitochondrial disease: What is new and what challenges remain? , 2015, Science.

[19]  Hui Yang,et al.  Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR , 2015, Nature Protocols.

[20]  S. Agarwal,et al.  Friedreich Ataxia: From the Eye of a Molecular Biologist , 2015, The neurologist.

[21]  P. Lindahl,et al.  Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex. , 2015, Biochemistry.

[22]  S. Scherer,et al.  PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. , 2015, Brain : a journal of neurology.

[23]  S. Seneca,et al.  Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy , 2015, Journal of Inherited Metabolic Disease.

[24]  C. López-Otín,et al.  New roles for mitochondrial proteases in health, ageing and disease , 2015, Nature Reviews Molecular Cell Biology.

[25]  P. Rehling,et al.  Unlocking the presequence import pathway. , 2015, Trends in cell biology.

[26]  Robert W. Taylor,et al.  Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency , 2015, Front. Genet..

[27]  T. Shaikh,et al.  Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder , 2015, Journal of Medical Genetics.

[28]  R. Wanders,et al.  Mitochondrial energy failure in HSD10 disease is due to defective mtDNA transcript processing. , 2015, Mitochondrion.

[29]  Xiang Li,et al.  Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions , 2014, Genetics in Medicine.

[30]  R. Lill,et al.  The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation. , 2014, Current opinion in microbiology.

[31]  F. Metzger,et al.  Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. , 2014, Cell metabolism.

[32]  G. Isaya Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease , 2014, Front. Pharmacol..

[33]  C. Sardet,et al.  Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. , 2014, Mitochondrion.

[34]  Malene B. Rasmussen,et al.  Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. , 2014, Brain : a journal of neurology.

[35]  John F. Robinson,et al.  Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency , 2013, Molecular genetics & genomic medicine.

[36]  Holger Lerche,et al.  De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. , 2013, American journal of human genetics.

[37]  M. Otyepka,et al.  A Computational Study of the Glycine-Rich Loop of Mitochondrial Processing Peptidase , 2013, PloS one.

[38]  J. I. Izpisúa Belmonte,et al.  Mitochondrial regulation in pluripotent stem cells. , 2013, Cell metabolism.

[39]  J. C. Belmonte,et al.  Characterization of pluripotent stem cells , 2013, Nature Protocols.

[40]  T. Meitinger,et al.  Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings , 2013, Journal of Inherited Metabolic Disease.

[41]  Lauren I. Siniscalchi,et al.  Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions , 2012, Nature Protocols.

[42]  J. Riemer,et al.  Mitochondrial Disulfide Relay: Redox-regulated Protein Import into the Intermembrane Space* , 2011, The Journal of Biological Chemistry.

[43]  O. Brüstle,et al.  Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain , 2011, Cellular and Molecular Life Sciences.

[44]  Yasuko Matsumura,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[45]  Bernhard M. Schuldt,et al.  A bioinformatic assay for pluripotency in human cells , 2011, Nature Methods.

[46]  D. Berkholz,et al.  Normal and Friedreich Ataxia Cells Express Different Isoforms of Frataxin with Complementary Roles in Iron-Sulfur Cluster Assembly* , 2010, The Journal of Biological Chemistry.

[47]  N. Pfanner,et al.  Mitochondrial protein import: from proteomics to functional mechanisms , 2010, Nature Reviews Molecular Cell Biology.

[48]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[49]  D. Wallace,et al.  Mitochondrial DNA mutations in disease and aging , 2010, Environmental and molecular mutagenesis.

[50]  I. Condò,et al.  Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. , 2010, Human molecular genetics.

[51]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[52]  Thomas D. Fox,et al.  Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation , 2010, Nature Reviews Molecular Cell Biology.

[53]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[54]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[55]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[56]  O. Brüstle,et al.  A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration , 2009, Proceedings of the National Academy of Sciences.

[57]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[58]  D. Mokranjac,et al.  Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. , 2009, Biochimica et biophysica acta.

[59]  M. Argentini,et al.  The in vivo mitochondrial two-step maturation of human frataxin. , 2008, Human molecular genetics.

[60]  R. Stuart Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria , 2008, Journal of bioenergetics and biomembranes.

[61]  D. Hernandez,et al.  Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. , 2008, American journal of human genetics.

[62]  Rutger O. Vogel,et al.  Human mitochondrial complex I assembly: a dynamic and versatile process. , 2007, Biochimica et biophysica acta.

[63]  J. Gulbis,et al.  Mitochondrial protein-import machinery: correlating structure with function. , 2007, Trends in cell biology.

[64]  Walter Neupert,et al.  Analysis and prediction of mitochondrial targeting signals. , 2007, Methods in cell biology.

[65]  T. Rouault,et al.  Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. , 2006, Cell metabolism.

[66]  N. Pfanner,et al.  Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins , 2006, The EMBO journal.

[67]  N. Pfanner,et al.  Isolation of yeast mitochondria. , 2006, Methods in molecular biology.

[68]  H. Schägger,et al.  Blue native PAGE , 2006, Nature Protocols.

[69]  P. Cavadini,et al.  Mitochondrial processing peptidases. , 2002, Biochimica et biophysica acta.

[70]  E. Shoubridge Nuclear genetic defects of oxidative phosphorylation. , 2001, Human molecular genetics.

[71]  J. Deisenhofer,et al.  Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. , 2001, Structure.

[72]  J. Adamec,et al.  Two-step Processing of Human Frataxin by Mitochondrial Processing Peptidase , 2000, The Journal of Biological Chemistry.

[73]  A. Munnich,et al.  Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia , 1997, Nature Genetics.

[74]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[75]  R. Jensen,et al.  MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease. , 1988, The EMBO journal.