Major mergers are not significant drivers of star formation or morphological transformation around the epoch of peak cosmic star formation

This is a pre-copyedited, author-produced pdf of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record, E. K. Lofthouse; S. Kaviraj; C. J. Conselice; A. Mortlock; and W. Hartley, ‘Major mergers are not significant drivers of star formation or morphological transformation around the epoch of peak cosmic star formation’, MNRAS, (2016) 465(3): 2895-2900, first published online 10 November 2016, is available at doi: https://doi.org/10.1093/mnras/stw2895 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

[1]  W. Sargent,et al.  The History of Star Formation and the Colors of Late-Type Galaxies , 1973 .

[2]  Steward Observatory,et al.  The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts , 2014, 1409.7082.

[3]  Gregory F. Snyder,et al.  Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 < z < 2 via principal component analysis , 2015, 1504.01751.

[4]  J. Silk,et al.  A coincidence of disturbed morphology and blue UV colour: minor-merger-driven star formation in early-type galaxies at z ~ 0.6 , 2010, 1001.2141.

[5]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[6]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[7]  R. Davé,et al.  Galaxies in a simulated Lambda CDM Universe-I . Cold mode and hot cores , 2018 .

[8]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[9]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[10]  S. Kaviraj,et al.  Galaxy merger histories and the role of merging in driving star formation at z > 1 , 2014, 1411.2595.

[11]  R. Davé,et al.  SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .

[12]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[13]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[14]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[15]  Ignacio Trujillo,et al.  Early type galaxies have been the predominant morphological class for massive galaxies since only z~1 , 2011, 1111.6993.

[16]  V. Avila-Reese,et al.  The growth of galactic bulges through mergers in Λ cold dark matter haloes revisited – II. Morphological mix evolution , 2013, 1311.3163.

[17]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[18]  J. Moustakas,et al.  ApJ, accepted Preprint typeset using L ATEX style emulateapj v. 6/22/04 OPTICAL STAR-FORMATION RATE INDICATORS , 2006 .

[19]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[20]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[21]  R. Teyssier,et al.  High-redshift major mergers weakly enhance star formation , 2016, 1610.03877.

[22]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[23]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[24]  A. Fontana,et al.  Deconstructing the Galaxy Stellar Mass Function with UKIDSS and CANDELS: The Impact of Colour, Structure and Environment , 2014, 1411.3339.

[25]  R. Nichol,et al.  Star Formation Rate Indicators in the Sloan Digital Sky Survey , 2003, astro-ph/0306621.

[26]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[27]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[28]  P. Hopkins,et al.  ON SIZES, KINEMATICS, M/L GRADIENTS, AND LIGHT PROFILES OF MASSIVE COMPACT GALAXIES AT z ∼ 2 , 2010, 1008.4127.

[29]  S. Kaviraj The importance of minor-merger-driven star formation and black hole growth in disc galaxies , 2014, 1402.1166.

[30]  B. T. Dullo,et al.  CENTRAL STELLAR MASS DEFICITS IN THE BULGES OF LOCAL LENTICULAR GALAXIES, AND THE CONNECTION WITH COMPACT z ∼ 1.5 GALAXIES , 2013, 1303.1273.

[31]  Joel R. Primack,et al.  Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers , 2008, 0805.1246.

[32]  M. Dopita,et al.  The insignificance of major mergers in driving star formation at z ≃ 2 , 2012, 1210.4160.

[33]  C. Conselice,et al.  Gas accretion as a dominant formation mode in massive galaxies from the GOODS NICMOS Survey , 2012, 1206.6995.

[34]  C. Conselice,et al.  Studying the emergence of the red sequence through galaxy clustering: host halo masses at z > 2 , 2013, 1303.0816.

[35]  Carlos Hoyos,et al.  THE STRUCTURES AND TOTAL (MINOR + MAJOR) MERGER HISTORIES OF MASSIVE GALAXIES UP TO z ∼ 3 IN THE HST GOODS NICMOS SURVEY: A POSSIBLE SOLUTION TO THE SIZE EVOLUTION PROBLEM , 2011, 1111.5662.

[36]  K. Meisenheimer,et al.  GEMS: Which Galaxies Dominate the z ~ 0.7 Ultraviolet Luminosity Density? , 2004, astro-ph/0408289.

[37]  C. Conselice,et al.  Galaxy formation as a cosmological tool – I. The galaxy merger history as a measure of cosmological parameters , 2014, 1407.3811.

[38]  W. Meikle,et al.  Recent star formation in interacting galaxies – I. Evidence from JHKL photometry , 1984 .

[39]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[40]  R. Davé,et al.  The Redshift and Mass Dependence on the Formation of The Hubble Sequence at z>1 from CANDELS/UDS , 2013, 1305.2204.

[41]  B. T. Dullo,et al.  HIDING IN PLAIN SIGHT: AN ABUNDANCE OF COMPACT MASSIVE SPHEROIDS IN THE LOCAL UNIVERSE , 2015, 1502.07024.

[42]  S. White,et al.  Simulations of mergers between disc–halo galaxies , 1983 .

[43]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[44]  M. Dopita,et al.  Newborn spheroids at high redshift : When and how did the dominant, old stars in today's massive galaxies form? , 2012, 1206.2360.

[45]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[46]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[47]  C. Conselice,et al.  Minor versus major mergers: the stellar mass growth of massive galaxies from z = 3 using number density selection techniques , 2014, 1409.1582.

[48]  L. Hernquist Tidal triggering of starbursts and nuclear activity in galaxies , 1989, Nature.

[49]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[50]  S. C. Trager,et al.  The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters , 2000, astro-ph/0001072.