Photoelectric Conversion Properties of Dye-Sensitized Solar Cells Using Dye-Dispersing Titania

The time-resolved fluorescence and photoelectrochemical properties of dye-sensitized solar cells using crystalline titania electrodes coated with N3 dye-dispersing amorphous titania gel were invest...

[1]  Hiromasa Nishikiori,et al.  Influence of Steam Treatment on Dye−Titania Complex Formation and Photoelectric Conversion Property of Dye-Doped Titania Gel , 2011 .

[2]  Hiromasa Nishikiori,et al.  Molecular forms and fluorescence processes of 9-aminoacridine in thin sol–gel films , 2010 .

[3]  A. Furube,et al.  Mechanism of Particle Size Effect on Electron Injection Efficiency in Ruthenium Dye-Sensitized TiO2 Nanoparticle Films , 2010 .

[4]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[5]  Hiromasa Nishikiori,et al.  Photo-electric conversion in dye-doped nanocrystalline titania films , 2009 .

[6]  P. Balraju,et al.  Quasi solid state dye sensitized solar cells employing a polymer electrolyte and xanthene dyes , 2009 .

[7]  Hiromasa Nishikiori,et al.  Effect of steam treatment on photocurrent and dye-titania interaction in dye-doped titania gel , 2007 .

[8]  M. El-Sayed,et al.  Change in Titania Structure from Amorphousness to Crystalline Increasing Photoinduced Electron-Transfer Rate in Dye-Titania System , 2007 .

[9]  V. Colvin,et al.  Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. , 2006, Journal of colloid and interface science.

[10]  P. Fuierer,et al.  Low-temperature preparation of nanocrystalline anatase films through a sol-gel route , 2006 .

[11]  L. Ge,et al.  Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols , 2006 .

[12]  Hiromasa Nishikiori,et al.  Photocurrent observed in dye-doped titania gel , 2006 .

[13]  S. Yin,et al.  Solvothermal synthesis of visible light responsive nitrogen-doped titania nanocrystals , 2006 .

[14]  Michael Grätzel,et al.  Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. , 2005, Journal of the American Chemical Society.

[15]  Liping Li,et al.  High purity anatase TiO(2) nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. , 2005, Journal of the American Chemical Society.

[16]  C. Yuan,et al.  Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols , 2005 .

[17]  Jiaguo Yu,et al.  Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature , 2005 .

[18]  M. Abdel-Mottaleb,et al.  The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles , 2005 .

[19]  Jin Suk Chung,et al.  Low-temperature coating of sol-gel anatase thin films , 2004 .

[20]  A. Das,et al.  Effect of surface modification on back electron transfer dynamics of dibromo fluorescein sensitized TiO2 nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  T. Lian,et al.  Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film , 2003 .

[22]  S. Pelet,et al.  Femtosecond Dynamics of Interfacial and Intermolecular Electron Transfer at Eosin-Sensitized Metal Oxide Nanoparticles , 2003 .

[23]  V. Sundström,et al.  Particle Size and Crystallinity Dependent Electron Injection in Fluorescein 27-Sensitized TiO2 Films , 2003 .

[24]  P. P. Lottici,et al.  Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films , 2002 .

[25]  Jani Kallioinen,et al.  Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. , 2002, Journal of the American Chemical Society.

[26]  H. Ghosh,et al.  Emission from the Charge Transfer State of Xanthene Dye-Sensitized TiO2 Nanoparticles: A New Approach to Determining Back Electron Transfer Rate and Verifying the Marcus Inverted Regime , 2001 .

[27]  V. Sundström,et al.  Electron Injection and Recombination in Fluorescein 27-Sensitized TiO2 Thin Films , 2001 .

[28]  Anders Hagfeldt,et al.  Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes , 2000 .

[29]  Kazumichi Yanagisawa and,et al.  Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature , 1999 .

[30]  Prashant V. Kamat,et al.  Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization , 1999 .

[31]  Jincai Zhao,et al.  Adsorption model of ethyl ester of fluorescein on colloidal TiO2 and the mechanism of the interfacial electron transfer , 1998 .

[32]  V. Sundström,et al.  Dynamics of Electron Injection and Recombination of Dye-Sensitized TiO2 Particles , 1998 .

[33]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[34]  Wang,et al.  Spectral Characteristics and Photosensitization Effect on TiO2 of Fluorescein in AOT Reversed Micelles , 1998, Journal of colloid and interface science.

[35]  Hiromasa Nishikiori,et al.  Molecular Forms of Rhodamine B in Dip-Coated Thin Films , 1997 .

[36]  Y. Wada,et al.  Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell , 1995 .

[37]  Hiromasa Nishikiori,et al.  Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol-gel method , 1995 .

[38]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[39]  M. Anderson,et al.  Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets , 1993 .

[40]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.