Spectral mixture analysis for surveillance of harmful algal blooms (SMASH): A field-, laboratory-, and satellite-based approach to identifying cyanobacteria genera from remotely sensed data

[1]  Ryan E. O’Shea,et al.  Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery , 2021, Remote Sensing of Environment.

[2]  Giorgos Mountrakis,et al.  A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective , 2021, Remote. Sens..

[3]  Megan M. Coffer,et al.  Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales , 2021, Ecological indicators.

[4]  J. Graham,et al.  Hyperspectral Reflectance Characteristics of Cyanobacteria , 2021, Advances in Remote Sensing.

[5]  K. Joyce,et al.  Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook , 2021, Frontiers in Environmental Science.

[6]  S. V. Balasubramanian,et al.  ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters , 2021, Remote Sensing of Environment.

[7]  C. Barbosa,et al.  A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks , 2021, Frontiers in Remote Sensing.

[8]  C. Giardino,et al.  Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters , 2020 .

[9]  Yang Yu,et al.  Interannual and Seasonal Shift between Microcystis and Dolichospermum: A 7-Year Investigation in Lake Chaohu, China , 2020, Water.

[10]  Megan M. Coffer,et al.  Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing , 2020, Ecological indicators.

[11]  B. Matsushita,et al.  Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach , 2020, Remote Sensing of Environment.

[12]  Rudolf Richter,et al.  PACO: Python-Based Atmospheric Correction , 2020, Sensors.

[13]  Richard P. Stumpf,et al.  Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing , 2019, Scientific Reports.

[14]  M. Simard,et al.  Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications , 2019, Water.

[15]  J C Ho,et al.  Widespread global increase in intense lake phytoplankton blooms since the 1980s , 2019, Nature.

[16]  Rudolf Richter,et al.  Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.

[17]  Igor Ogashawara,et al.  The Use of Sentinel-3 Imagery to Monitor Cyanobacterial Blooms , 2019, Environments.

[18]  Giuseppe Zibordi,et al.  Algorithms Merging for the Determination of Chlorophyll- ${a}$ Concentration in the Black Sea , 2019, IEEE Geoscience and Remote Sensing Letters.

[19]  Quinten Vanhellemont,et al.  Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives , 2019, Remote Sensing of Environment.

[20]  David W. Allen,et al.  Optical characterization of two cyanobacteria genera, Aphanizomenon and Microcystis, with hyperspectral microscopy , 2018, Journal of Applied Remote Sensing.

[21]  Pierre Defourny,et al.  Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context , 2018, Remote. Sens..

[22]  B. Schaeffer,et al.  A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing , 2017, Harmful algae.

[23]  C. Bernard,et al.  Appendix 2: Cyanobacteria Associated With the Production of Cyanotoxins , 2017 .

[24]  J. V. van Wyk,et al.  An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. , 2016, Harmful algae.

[25]  Uta Heiden,et al.  THE NEW HYPERSPECTRAL SENSOR DESIS ON THE MULTI-PAYLOAD PLATFORM MUSES INSTALLED ON THE ISS , 2016 .

[26]  F. Pick Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria , 2016 .

[27]  T. Dreher,et al.  An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. , 2016, Harmful algae.

[28]  Zhongfeng Qiu,et al.  Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra , 2015, Remote. Sens..

[29]  Raphael M. Kudela,et al.  Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters , 2015 .

[30]  C. Giardino,et al.  Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission , 2015 .

[31]  D. Siegel,et al.  Remote monitoring of giant kelp biomass and physiological condition: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) mission , 2015 .

[32]  Nilton Nobuhiro Imai,et al.  Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images , 2015, International journal of environmental research and public health.

[33]  David Krutz,et al.  DESIS (DLR Earth Sensing Imaging Spectrometer for the ISS-MUSES platform) , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[34]  E. Berdalet,et al.  Harmful Algal Blooms : A scientific summary for policy makers , 2015 .

[35]  David P. Hamilton,et al.  Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat , 2015, Environmental Monitoring and Assessment.

[36]  Richard P. Stumpf,et al.  Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA , 2015 .

[37]  Young-Heon Jo,et al.  Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI) , 2013, Remote. Sens..

[38]  Ying Sun,et al.  Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe , 2013, Environmental science and pollution research international.

[39]  D. Mishra,et al.  Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters , 2012 .

[40]  H. Loisel,et al.  Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. , 2012, Optics express.

[41]  François Steinmetz,et al.  Atmospheric correction in presence of sun glint: application to MERIS. , 2011, Optics express.

[42]  Rama Rao Nidamanuri,et al.  Normalized Spectral Similarity Score ( ${\hbox{NS}}^{3}$) as an Efficient Spectral Library Searching Method for Hyperspectral Image Classification , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  Chuqun Chen,et al.  Remote sensing of chlorophyll-a concentrations of the Pearl River Estuary from MODIS land bands , 2010 .

[44]  Blahoslav Maršálek,et al.  Toxins produced in cyanobacterial water blooms – toxicity and risks , 2009, Interdisciplinary toxicology.

[45]  Lin Li,et al.  Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin , 2008 .

[46]  Blahoslav Maršálek,et al.  Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks , 2008 .

[47]  C. Moulin,et al.  Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view , 2008 .

[48]  S. Higgins,et al.  AN ECOLOGICAL REVIEW OF CLADOPHORA GLOMERATA (CHLOROPHYTA) IN THE LAURENTIAN GREAT LAKES 1 , 2008, Journal of phycology.

[49]  R. P. Stumpf,et al.  Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes , 2008 .

[50]  Blahoslav Maršálek,et al.  Concentrations and Seasonal Trends of Extracellular Microcystins in Freshwaters of the Czech Republic – Results of the National Monitoring Program , 2007 .

[51]  I. Creed,et al.  Understanding variation in trophic status of lakes on the Boreal Plain: A 20 year retrospective using Landsat TM imagery , 2007 .

[52]  R. Doerffer,et al.  The MERIS Case 2 water algorithm , 2007 .

[53]  Zhongping Lee,et al.  Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. , 2006, Applied optics.

[54]  François-Marie Bréon,et al.  Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery , 2005 .

[55]  G. Codd,et al.  Cyanobacterial toxins: risk management for health protection. , 2005, Toxicology and applied pharmacology.

[56]  Stefan G. H. Simis,et al.  Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .

[57]  Upmanu Lall,et al.  Use of satellite imagery for water quality studies in New York Harbor , 2004 .

[58]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[59]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[60]  S. Ekstrand Landsat TM based quantification of chlorophyll-a during algae blooms in coastal waters , 1992 .

[61]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[62]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[63]  C. Lorenzen,et al.  Spectra of Backscattered Light from the Sea Obtained from Aircraft as a Measure of Chlorophyll Concentration , 1970, Science.

[64]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[65]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[66]  D. Roelke,et al.  A chronicle of a killer alga in the west: ecology, assessment, and management of Prymnesium parvum blooms , 2015, Hydrobiologia.

[67]  Raphael M. Kudela,et al.  Developing global capabilities for the observation and predication of harmful algal blooms , 2014 .

[68]  W. Dodds,et al.  Eutrophication of U.S. freshwaters: analysis of potential economic damages. , 2009, Environmental science & technology.

[69]  Daniel L. Roelke,et al.  Use of Discriminant and Fourth-Derivative Analyses With High-resolution Absorption Spectra for Phytoplankton Research: Limitations at Varied Signal-to-Noise Ratio and Spectral Resolution , 1999 .

[70]  J. W. Brown,et al.  Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. , 1983, Applied optics.

[71]  C. Wezernak,et al.  Trophic state analysis of inland lakes , 1976 .