Site-specific dual encoding and labeling of proteins via genetic code expansion.

[1]  Yuxuan Shen,et al.  Optimizing eRF1 to Enable the Genetic Encoding of Three Distinct Noncanonical Amino Acids in Mammalian Cells , 2022, Advanced biology.

[2]  E. Antony,et al.  Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells. , 2021, ACS chemical biology.

[3]  J. Chin,et al.  A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design , 2021, Nature Chemistry.

[4]  E. Lemke,et al.  Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation , 2021, Cell.

[5]  Yu Ding,et al.  Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery. , 2021, Journal of medicinal chemistry.

[6]  V. Cornish,et al.  Genetic Code Expansion: A Brief History and Perspective , 2021, Biochemistry.

[7]  G. Salmond,et al.  Sense codon reassignment enables viral resistance and encoded polymer synthesis , 2021, Science.

[8]  J. Kaar,et al.  Faster Surface Ligation Reactions Improve Immobilized Enzyme Structure and Activity. , 2021, Journal of the American Chemical Society.

[9]  Erika A. DeBenedictis,et al.  Measuring the tolerance of the genetic code to altered codon size , 2021, bioRxiv.

[10]  Jeffery M. Tharp,et al.  Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons , 2020, bioRxiv.

[11]  R. Raines,et al.  Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes. , 2020, Journal of the American Chemical Society.

[12]  D. Söll,et al.  Using Genetic Code Expansion for Protein Biochemical Studies , 2020, Frontiers in Bioengineering and Biotechnology.

[13]  K. Alexandrov,et al.  Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides , 2020, Frontiers in Bioengineering and Biotechnology.

[14]  C. Hackenberger,et al.  Recent advances of thiol-selective bioconjugation reactions. , 2020, Current opinion in chemical biology.

[15]  P. Karplus,et al.  Overcoming near-cognate suppression in a Release Factor 1-deficient host with an improved nitro-tyrosine tRNA synthetase. , 2020, Journal of molecular biology.

[16]  M. Landreh,et al.  Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells. , 2020, Cell reports.

[17]  Julian C. W. Willis,et al.  Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids , 2020, Nature Chemistry.

[18]  Q. Pei,et al.  Dual-Stimuli-Responsive Polymer Composite with Ultrawide Tunable Stiffness Range Triggered by Water and Temperature , 2020 .

[19]  Lucy J. Colwell,et al.  Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs , 2020, Nature Biotechnology.

[20]  T. Weil,et al.  Polymer bioconjugates: Modern design concepts toward precision hybrid materials , 2020 .

[21]  R. Mehl,et al.  Access To Faster Eukaryotic Cell Labeling With Encoded Tetrazine Amino Acids. , 2020, Journal of the American Chemical Society.

[22]  Aaron W Feldman,et al.  New codons for efficient production of unnatural proteins in a semi-synthetic organism , 2020, Nature Chemical Biology.

[23]  A. Schreiber,et al.  Adjustable Bioorthogonal Conjugation Platform for Protein Studies in Live Cells based on Artificial Compartments. , 2020, ACS synthetic biology.

[24]  M. Oreb Construction of artificial membrane transport metabolons - an emerging strategy in metabolic engineering. , 2020, FEMS microbiology letters.

[25]  N. Stephanopoulos Hybrid Nanostructures from the Self-Assembly of Proteins and DNA , 2020, Chem.

[26]  M. Schroeder,et al.  The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases , 2019, Scientific Reports.

[27]  J. Chin,et al.  Reprogramming the genetic code , 2012, Nature Reviews Genetics.

[28]  Jeffery M. Tharp,et al.  Engineering aminoacyl-tRNA synthetases for use in synthetic biology. , 2020, The Enzymes.

[29]  K. Y. Zhang,et al.  Bioorthogonal "Labeling after Recognition" Affording an FRET-based Luminescent Probe for Detecting and Imaging Caspase-3 via Photoluminescence Lifetime Imaging. , 2019, Journal of the American Chemical Society.

[30]  Jamie H. D. Cate,et al.  Initiation of Protein Synthesis with Non-canonical Amino Acids In Vivo. , 2019, Angewandte Chemie.

[31]  Mao Li,et al.  The Bioorthogonal Isonitrile-Chlorooxime Ligation. , 2019, Journal of the American Chemical Society.

[32]  Vijai Singh,et al.  Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems , 2019, Front. Bioeng. Biotechnol..

[33]  P. Karplus,et al.  Immobilization of Proteins with Controlled Load and Orientation. , 2019, ACS applied materials & interfaces.

[34]  D. Boger,et al.  Synthesis, characterization, and cycloaddition reactivity of a monocyclic aromatic 1,2,3,5-tetrazine. , 2019, Journal of the American Chemical Society.

[35]  R. Mehl,et al.  Engineering Spatial Orthogonality into Protein Translation. , 2019, Biochemistry.

[36]  P. Rizkallah,et al.  Positive functional synergy of structurally integrated artificial protein dimers assembled by Click chemistry , 2019, Communications Chemistry.

[37]  Farren J. Isaacs,et al.  The Role of Orthogonality in Genetic Code Expansion , 2019, Life.

[38]  J. Chin,et al.  Efficient Phage Display with Multiple Distinct Non‐Canonical Amino Acids Using Orthogonal Ribosome‐Mediated Genetic Code Expansion , 2019, Angewandte Chemie.

[39]  Y. Andreev,et al.  Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement , 2019, Biomolecules.

[40]  Z. Xi,et al.  The one-pot nonhydrolysis Staudinger reaction and Staudinger or SPAAC ligation. , 2019, Organic & biomolecular chemistry.

[41]  Brian J. Levandowski,et al.  Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. , 2019, Angewandte Chemie.

[42]  Philip R Gafken,et al.  A Highly Versatile Expression System for the Production of Multiply Phosphorylated Proteins. , 2019, ACS chemical biology.

[43]  J. Chin,et al.  Total synthesis of Escherichia coli with a recoded genome , 2019, Nature.

[44]  K. Matsuzaki,et al.  Live-cell imaging of membrane proteins by a coiled-coil labeling method-Principles and applications. , 2019, Biochimica et biophysica acta. Biomembranes.

[45]  Kamalika Mukherjee,et al.  Site-Specific Bioconjugation and Multi-Bioorthogonal Labeling via Rapid Formation of a Boron-Nitrogen Heterocycle. , 2019, Bioconjugate chemistry.

[46]  M. Drescher,et al.  Double Nitroxide Labeling by Copper-Catalyzed Azide–Alkyne Cycloadditions with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy , 2019, ACS chemical biology.

[47]  W. Niu,et al.  Genetic Incorporation of Noncanonical Amino Acids Using Two Mutually Orthogonal Quadruplet Codons. , 2019, ACS synthetic biology.

[48]  D. Söll,et al.  Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal? , 2019, International journal of molecular sciences.

[49]  Sarah B Erickson,et al.  Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. , 2019, Journal of the American Chemical Society.

[50]  B. Oliveira,et al.  Azabicyclic vinyl sulfones for residue-specific dual protein labelling† †Electronic supplementary information (ESI) available: Detailed methods and additional characterisation. See DOI: 10.1039/c9sc00125e , 2019, Chemical science.

[51]  H. Suga,et al.  Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. , 2019, Journal of the American Chemical Society.

[52]  Anne‐Katrin Späte,et al.  Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry , 2019, Chembiochem : a European journal of chemical biology.

[53]  Julian C. W. Willis,et al.  An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells , 2018, Biochemistry.

[54]  T. Katoh,et al.  In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. , 2019, Current opinion in biotechnology.

[55]  David G. Schwark,et al.  Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the Methanocaldococcus jannaschii Orthogonal Pair , 2018, Genes.

[56]  Farren J. Isaacs,et al.  Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue , 2018, eLife.

[57]  A. Chatterjee,et al.  Resurrecting the Bacterial Tyrosyl-tRNA Synthetase/tRNA Pair for Expanding the Genetic Code of Both E. coli and Eukaryotes. , 2018, Cell chemical biology.

[58]  David R. Liu,et al.  One-Pot Dual Labeling of IgG 1 and Preparation of C-to-C Fusion Proteins Through a Combination of Sortase A and Butelase 1. , 2018, Bioconjugate chemistry.

[59]  C. Biot,et al.  Asking more from metabolic oligosaccharide engineering , 2018, Chemical science.

[60]  S. Elsässer,et al.  Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells , 2018, bioRxiv.

[61]  F. V. van Delft,et al.  Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho-quinones and azides. , 2018, Chemical communications.

[62]  Julian C. W. Willis,et al.  Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs , 2018, Nature Chemistry.

[63]  Jeffery M. Tharp,et al.  tRNAPyl: Structure, function, and applications , 2018, RNA biology.

[64]  Xiaomeng Hou,et al.  Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans. , 2018, Bioconjugate chemistry.

[65]  A. Chatterjee,et al.  Capturing Post-Translational Modification-Triggered Protein-Protein Interactions Using Dual Noncanonical Amino Acid Mutagenesis. , 2018, ACS chemical biology.

[66]  O. Namy,et al.  Deciphering the reading of the genetic code by near-cognate tRNA , 2018, Proceedings of the National Academy of Sciences.

[67]  Antonino Ingargiola,et al.  Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer , 2018, Science.

[68]  Douglas D Young,et al.  Playing with the Molecules of Life. , 2018, ACS chemical biology.

[69]  Chenguang Fan,et al.  Genetically Incorporating Two Distinct Post-translational Modifications into One Protein Simultaneously. , 2018, ACS synthetic biology.

[70]  P. O'Donoghue,et al.  Acetylation Regulates Thioredoxin Reductase Oligomerization and Activity , 2017, Antioxidants & redox signaling.

[71]  R. Serfling,et al.  Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells , 2017, Nucleic acids research.

[72]  A. Chatterjee,et al.  Expanding the Scope of Single- and Double-Noncanonical Amino Acid Mutagenesis in Mammalian Cells Using Orthogonal Polyspecific Leucyl-tRNA Synthetases. , 2017, Biochemistry.

[73]  Jeffery M. Tharp,et al.  Using Amber and Ochre Nonsense Codons to Code Two Different Noncanonical Amino Acids in One Protein Gene. , 2018, Methods in molecular biology.

[74]  Sagar D. Khare,et al.  Enzyme stabilization via computationally guided protein stapling , 2017, Proceedings of the National Academy of Sciences.

[75]  S. Rinaldi,et al.  Disulfide Bond Mimetics: Strategies and Challenges. , 2017, Chemistry.

[76]  Alexandros Katranidis,et al.  Selective Double-Labeling of Cell-Free Synthesized Proteins for More Accurate smFRET Studies. , 2017, Analytical chemistry.

[77]  Lei Wang,et al.  Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts. , 2017, Accounts of chemical research.

[78]  Jason W. Chin,et al.  Expanding and reprogramming the genetic code , 2017, Nature.

[79]  K. Houk,et al.  Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities. , 2017, Accounts of Chemical Research.

[80]  A. Chatterjee,et al.  Defining the current scope and limitations of dual noncanonical amino acid mutagenesis in mammalian cells† †Electronic supplementary information (ESI) available: Experimental details, supplementary data, figures and references. See DOI: 10.1039/c7sc02560b Click here for additional data file. , 2017, Chemical science.

[81]  Sarah B Erickson,et al.  A Chemoselective Rapid Azo-Coupling Reaction (CRACR) for Unclickable Bioconjugation. , 2017, Journal of the American Chemical Society.

[82]  Dieter Söll,et al.  Continuous directed evolution of aminoacyl-tRNA synthetases , 2017, Nature chemical biology.

[83]  B. Oliveira,et al.  Inverse electron demand Diels-Alder reactions in chemical biology. , 2017, Chemical Society reviews.

[84]  Sydney E Morris,et al.  Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells. , 2017, ACS synthetic biology.

[85]  Eric T. Kool,et al.  Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. , 2017, Chemical reviews.

[86]  Xiaoyong Yang,et al.  Protein O-GlcNAcylation: emerging mechanisms and functions , 2017, Nature Reviews Molecular Cell Biology.

[87]  G. Haran,et al.  In vitro suppression of two different stop codons , 2017, Biotechnology and bioengineering.

[88]  Farren J. Isaacs,et al.  Translation system engineering in Escherichia coli enhances non‐canonical amino acid incorporation into proteins , 2017, Biotechnology and bioengineering.

[89]  A. Chatterjee,et al.  An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. , 2017, Nature chemical biology.

[90]  Z. An,et al.  Antibody-drug conjugates: recent advances in conjugation and linker chemistries , 2016, Protein & Cell.

[91]  A. Sutherland,et al.  Recent advances in the synthesis and application of fluorescent α-amino acids. , 2016, Organic & biomolecular chemistry.

[92]  Siheng Li,et al.  Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction. , 2016, Bioconjugate chemistry.

[93]  Nediljko Budisa,et al.  Xenomicrobiology: a roadmap for genetic code engineering , 2016, Microbial biotechnology.

[94]  E. Kobatake,et al.  Development of a Split SNAP-CLIP Double Labeling System for Tracking Proteins Following Dissociation from Protein-Protein Complexes in Living Cells. , 2016, Analytical chemistry.

[95]  O. Seitz,et al.  Peptide-tags for site-specific protein labelling in vitro and in vivo. , 2016, Molecular bioSystems.

[96]  Yong-Xiang Chen,et al.  Dual-labeling of ubiquitin proteins by chemoselective reactions for sensing UCH-L3. , 2016, Molecular bioSystems.

[97]  Kai Johnsson,et al.  A General Strategy for the Semisynthesis of Ratiometric Fluorescent Sensor Proteins with Increased Dynamic Range. , 2016, Journal of the American Chemical Society.

[98]  K. Lim,et al.  Puromycin Analogues Capable of Multiplexed Imaging and Profiling of Protein Synthesis and Dynamics in Live Cells and Neurons. , 2016, Angewandte Chemie.

[99]  F. Rutjes,et al.  Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides , 2016, Topics in Current Chemistry.

[100]  Gonçalo J. L. Bernardes,et al.  Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry , 2016, Chemical science.

[101]  Antoine Maruani,et al.  Recent advances in the construction of antibody-drug conjugates. , 2016, Nature chemistry.

[102]  M. Schmitt,et al.  Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen. , 2015, Biochemistry.

[103]  Yi Zhang,et al.  Simultaneous Site-Specific Dual Protein Labeling Using Protein Prenyltransferases. , 2015, Bioconjugate chemistry.

[104]  E James Petersson,et al.  Multiply labeling proteins for studies of folding and stability. , 2015, Current opinion in chemical biology.

[105]  Estela Haldón,et al.  Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. , 2015, Organic & biomolecular chemistry.

[106]  J. M. Rogers,et al.  Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. , 2015, Organic & biomolecular chemistry.

[107]  R. Mehl,et al.  Ideal Bioorthogonal Reactions Using A Site-Specifically Encoded Tetrazine Amino Acid. , 2015, Journal of the American Chemical Society.

[108]  Alberto Schena,et al.  Modulating protein activity using tethered ligands with mutually exclusive binding sites , 2015, Nature Communications.

[109]  H. Kolmar,et al.  Self-Assembled Hybrid Aptamer-Fc Conjugates for Targeted Delivery: A Modular Chemoenzymatic Approach. , 2015, ACS chemical biology.

[110]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[111]  Dennis W P M Löwik,et al.  Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation. , 2015, Bioconjugate chemistry.

[112]  P. O'Donoghue,et al.  Revealing the amino acid composition of proteins within an expanded genetic code , 2014, Nucleic acids research.

[113]  A. Rutkowska,et al.  T‐CrAsH: A Heterologous Chemical Crosslinker , 2014, Chembiochem : a European journal of chemical biology.

[114]  Christoph R. Lammers,et al.  Optimized Plasmid Systems for the Incorporation of Multiple Different Unnatural Amino Acids by Evolved Orthogonal Ribosomes , 2014, Chembiochem : a European journal of chemical biology.

[115]  P. Karplus,et al.  Gleaning Unexpected Fruits from Hard‐Won Synthetases: Probing Principles of Permissivity in Non‐canonical Amino Acid–tRNA Synthetases , 2014, Chembiochem : a European journal of chemical biology.

[116]  J. Chin,et al.  Concerted, Rapid, Quantitative, and Site-Specific Dual Labeling of Proteins , 2014, Journal of the American Chemical Society.

[117]  Stephen Wallace,et al.  Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET , 2014, Nature Chemistry.

[118]  P. Karplus,et al.  Structural Basis of Improved Second-Generation 3-Nitro-tyrosine tRNA Synthetases , 2014, Biochemistry.

[119]  Carsten Schultz,et al.  Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. , 2014, Angewandte Chemie.

[120]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[121]  S. Gribaldo,et al.  Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette , 2014, Archaea.

[122]  P. Schultz,et al.  Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. , 2013, Angewandte Chemie.

[123]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[124]  M. Distefano,et al.  Simultaneous dual protein labeling using a triorthogonal reagent. , 2013, Journal of the American Chemical Society.

[125]  J. V. van Hest,et al.  Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. , 2013, Organic & biomolecular chemistry.

[126]  M. Distefano,et al.  Enzymatic labeling of proteins: techniques and approaches. , 2013, Bioconjugate chemistry.

[127]  W. Reutter,et al.  Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.

[128]  P. Schultz,et al.  A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. , 2013, Biochemistry.

[129]  W. Liu,et al.  Nonsense and Sense Suppression Abilities of Original and Derivative Methanosarcina mazei Pyrrolysyl-tRNA Synthetase-tRNAPyl Pairs in the Escherichia coli BL21(DE3) Cell Strain , 2013, PloS one.

[130]  N. Devaraj,et al.  Fluorescent Live‐Cell Imaging of Metabolically Incorporated Unnatural Cyclopropene‐Mannosamine Derivatives , 2013, Chembiochem : a European journal of chemical biology.

[131]  Hak-Sung Kim,et al.  Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis. , 2013, Analytical chemistry.

[132]  Ilka U. Heinemann,et al.  Near‐cognate suppression of amber, opal and quadruplet codons competes with aminoacyl‐tRNAPyl for genetic code expansion , 2012, FEBS letters.

[133]  Fang Liu,et al.  Control and design of mutual orthogonality in bioorthogonal cycloadditions. , 2012, Journal of the American Chemical Society.

[134]  Zhiyong Wang,et al.  Catalyst‐Free and Site‐Specific One‐Pot Dual‐Labeling of a Protein Directed by Two Genetically Incorporated Noncanonical Amino Acids , 2012, Chembiochem : a European journal of chemical biology.

[135]  Matthew D. Schultz,et al.  Release Factor One Is Nonessential in Escherichia coli , 2012, ACS chemical biology.

[136]  D. Söll,et al.  N‐Acetyl lysyl‐tRNA synthetases evolved by a CcdB‐based selection possess N‐acetyl lysine specificity in vitro and in vivo , 2012, FEBS letters.

[137]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[138]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[139]  J. Krzycki,et al.  Functional context, biosynthesis, and genetic encoding of pyrrolysine. , 2011, Current opinion in microbiology.

[140]  Nediljko Budisa,et al.  In vivo incorporation of multiple noncanonical amino acids into proteins. , 2011, Angewandte Chemie.

[141]  Harekrushna Sahoo,et al.  Förster resonance energy transfer - A spectroscopic nanoruler: Principle and applications , 2011 .

[142]  Stefan Seeger,et al.  Understanding protein adsorption phenomena at solid surfaces. , 2011, Advances in colloid and interface science.

[143]  A. Brancale,et al.  Importance of single molecular determinants in the fidelity of expanded genetic codes , 2011, Proceedings of the National Academy of Sciences.

[144]  James A Van Deventer,et al.  Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. , 2010, Current opinion in chemical biology.

[145]  U. Zabel,et al.  Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores. , 2010, Bioconjugate chemistry.

[146]  Mingzi M. Zhang,et al.  Tandem fluorescence imaging of dynamic S-acylation and protein turnover , 2010, Proceedings of the National Academy of Sciences.

[147]  David H Russell,et al.  A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. , 2010, Angewandte Chemie.

[148]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[149]  H. Lusic,et al.  Generating permissive site-specific unnatural aminoacyl-tRNA synthetases. , 2010, Biochemistry.

[150]  C. Wilke,et al.  The evolutionary consequences of erroneous protein synthesis , 2009, Nature Reviews Genetics.

[151]  Emmanuelle Schmitt,et al.  Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo , 2009, Proceedings of the National Academy of Sciences.

[152]  R. Mehl,et al.  Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. , 2009, Molecular bioSystems.

[153]  J. Micklefield,et al.  Selective covalent protein immobilization: strategies and applications. , 2009, Chemical reviews.

[154]  Jürg Müller,et al.  Biochemical mechanisms of gene regulation by polycomb group protein complexes. , 2009, Current opinion in genetics & development.

[155]  O. Nureki,et al.  Pyrrolysyl-tRNA synthetase:tRNAPyl structure reveals the molecular basis of orthogonality , 2008, Nature.

[156]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[157]  W. Fann,et al.  Strategy for efficient site-specific FRET-dye labeling of ubiquitin. , 2008, Bioconjugate chemistry.

[158]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[159]  M. Sekine,et al.  Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms , 2007, Nucleic acids research.

[160]  Baowei Chen,et al.  Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes. , 2007, Bioconjugate chemistry.

[161]  D. Söll,et al.  Pyrrolysine is not hardwired for cotranslational insertion at UAG codons , 2007, Proceedings of the National Academy of Sciences.

[162]  M. Sisido,et al.  FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids , 2006, Nature Methods.

[163]  Y. Mori,et al.  Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. , 2006, Journal of the American Chemical Society.

[164]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[165]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[166]  A. Lazar,et al.  Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[167]  Kirsten Jørgensen,et al.  Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. , 2005, Current opinion in plant biology.

[168]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  Shigeyuki Yokoyama,et al.  Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion , 2003, Nature Structural Biology.

[170]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[171]  E. Haas,et al.  A general strategy for site-specific double labeling of globular proteins for kinetic FRET studies. , 2002, Bioconjugate chemistry.

[172]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[173]  G. Varani,et al.  The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. , 2000, EMBO reports.

[174]  R Giegé,et al.  Universal rules and idiosyncratic features in tRNA identity. , 1998, Nucleic acids research.

[175]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[176]  Enzo Terreno,et al.  Lanthanide(III) chelates for NMR biomedical applications , 1998 .

[177]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[178]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[179]  R. Goldman,et al.  Influence of codon context on UGA suppression and readthrough. , 1992, Journal of molecular biology.

[180]  D. Söll,et al.  Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli , 1988, Microbiological reviews.

[181]  S. Yokoyama,et al.  Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[182]  H. Engelberg-Kulka,et al.  UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. , 1981, Nucleic acids research.

[183]  F. Crick Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of molecular biology.