Scheduling with due dates and deadlines

Scheduling problems involving due dates or deadlines are analyzed. Emphasis is placed on the complexity of the problems (polynomially solvable or NP-hard) and on the time complexity of algorithms for polynomially solvable problems or on the kind of algorithms proposed (enumerative, local search, etc.) for other problems.

[1]  E. L. Lawler,et al.  Preemptive scheduling of uniform parallel machines to minimize the weighted number of late jobs : (preprint) , 1979 .

[2]  Ulrich Dorndorf,et al.  A Branch-and-Bound Algorithm , 2002 .

[3]  Robert L. Bulfin,et al.  Scheduling a Single Machine to Minimize the Weighted Number of Tardy Jobs , 1983 .

[4]  Philippe Baptiste,et al.  An O(n4) algorithm for preemptive scheduling of a single machine to minimize the number of late jobs , 1999, Oper. Res. Lett..

[5]  Oscar H. Ibarra,et al.  Approximation Algorithms for Certain Scheduling Problems , 1978, Math. Oper. Res..

[6]  Jeffrey B. Sidney,et al.  An Extension of Moore’s Due Date Algotithm , 1973 .

[7]  E. L. Lawler,et al.  A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs , 1991 .

[8]  Manfred K. Warmuth,et al.  A Fast Algorithm for Multiprocessor Scheduling of Unit-Length Jobs , 1989, SIAM J. Comput..

[9]  Chris N. Potts,et al.  A branch and bound algorithm to minimize the number of late jobs in a permutation flow-shop , 1989 .

[10]  David B. Shmoys,et al.  Jackson's Rule for Single-Machine Scheduling: Making a Good Heuristic Better , 1992, Math. Oper. Res..

[11]  Sartaj Sahni,et al.  Scheduling Independent Tasks with Due Times on a Uniform Processor System , 1980, JACM.

[12]  Charles U. Martel,et al.  Preemptive Scheduling with Release Times, Deadlines, and Due Times , 1982, JACM.

[13]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[14]  R. E. Larson,et al.  A Forward-Backward Procedure for the Single Machine Problem to Minimize Maximum Lateness , 1980 .

[15]  Chelliah Sriskandarajah A Note on the Generalized Due Dates Scheduling Problems , 1988 .

[16]  Graham McMahon,et al.  On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness , 1975, Oper. Res..

[17]  B. J. Lageweg,et al.  Scheduling identical jobs on uniform parallel machines , 1989 .

[18]  George L. Vairaktarakis,et al.  Complexity of Single Machine Hierarchical Scheduling: A Survey , 1993 .

[19]  Joseph Y.-T. Leung,et al.  Minimizing Mean Flow Time with Release Time and Deadline Constraints , 1993, J. Algorithms.

[20]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[21]  Jatinder N. D. Gupta,et al.  Minimizing tardy jobs in a flowshop with common due date , 2000, Eur. J. Oper. Res..

[22]  Valery Gordon,et al.  Single machine scheduling with deadlines, release and due dates , 1997 .

[23]  K. R. Baker Procedures for sequencing tasks with one resource type , 1973 .

[24]  Gerhard J. Woeginger,et al.  A Review of Machine Scheduling: Complexity, Algorithms and Approximability , 1998 .

[25]  Jatinder N. D. Gupta,et al.  The two-machine flowshop scheduling problem with total tardiness , 1989, Comput. Oper. Res..

[26]  Philippe Baptiste,et al.  Scheduling equal-length jobs on identical parallel machines , 2000, Discret. Appl. Math..

[27]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[28]  Stéphane Dauzère-Pérès,et al.  Minimizing late jobs in the general one machine scheduling problem , 1995 .

[29]  Wlodzimierz Szwarc,et al.  Decomposition of the single machine total tardiness problem , 1996, Oper. Res. Lett..

[30]  Chengbin Chu,et al.  A survey of the state-of-the-art of common due date assignment and scheduling research , 2002, Eur. J. Oper. Res..

[31]  Charles U. Martel,et al.  Preemptive Scheduling of Two Uniform Machines to Minimize the Number of Late Jobs , 1989, Oper. Res..

[32]  Wieslaw Kubiak,et al.  Scheduling shops to minimize the weighted number of late jobs , 1994, Oper. Res. Lett..

[33]  J. A. Hoogeveen,et al.  Scheduling a batching machine , 1998 .

[34]  Qing Lu,et al.  On decomposition of the total tardiness problem , 1995, Oper. Res. Lett..

[35]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[36]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[37]  E. L. Lawler,et al.  Preemptive Scheduling of. Precedence-Constrained Jobs on Parallel Machines , 1981 .

[38]  E. L. Lawler,et al.  Knapsack-like scheduling problems, the Moore-Hodgson algorithm and the 'tower of sets' property , 1994 .

[39]  Chris N. Potts,et al.  A survey of algorithms for the single machine total weighted tardiness scheduling problem , 1990, Discret. Appl. Math..

[40]  Barbara B. Simons,et al.  A fast algorithm for single processor scheduling , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[41]  L. V. Wassenhove,et al.  Algorithms for scheduling a single machine to minimize the weighted number of late jobs , 1988 .

[42]  Eugeniusz Nowicki,et al.  An Approximation Algorithm for a Single-Machine Scheduling Problem with Release Times and Delivery Times , 1994, Discret. Appl. Math..

[43]  H. Mine,et al.  PERFORMANCE ANALYSIS OF SIX APPROXIMATION ALGORITHMS FOR THE ONE-MACHINE MAXIMUM LATENESS SCHEDULING PROBLEM WITH READY TIMES , 1979 .

[44]  A. M. A. Hariri,et al.  Single machine scheduling with deadlines to minimize the weighted number of tardy jobs , 1994 .

[45]  Han Hoogeveen,et al.  Stronger Lagrangian bounds by use of slack variables: Applications to machine scheduling problems , 1992, Math. Program..

[46]  B. Adenso-Díaz Restricted neighborhood in the tabu search for the flowshop problem , 1992 .

[47]  Clyde L. Monma,et al.  Linear-Time Algorithms for Scheduling on Parallel Processors , 1982, Oper. Res..

[48]  Eugene L. Lawler,et al.  Optimal Sequencing of a Single Machine Subject to Precedence Constraints , 1973 .

[49]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[50]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[51]  L. V. Wassenhove,et al.  An algorithm for single machine sequencing with deadlines to minimize total weighted completion time , 1983 .

[52]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[53]  Awi Federgruen,et al.  Preemptive Scheduling of Uniform Machines by Ordinary Network Flow Techniques , 1986 .

[54]  SahniSartaj,et al.  Scheduling Independent Tasks with Due Times on a Uniform Processor System , 1980 .

[55]  Eugene L. Lawler,et al.  Scheduling a Single Machine to Minimize the Number of Late Jobs , 1983 .

[56]  Marc E. Posner,et al.  Minimizing Weighted Completion Times with Deadlines , 1985, Oper. Res..

[57]  Tapan Sen,et al.  A state-of-art survey of static scheduling research involving due dates , 1984 .

[58]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[59]  Chengbin Chu,et al.  Due date assignment and scheduling: Slk, TWK and other due date assignment models , 2002 .

[60]  Chengbin Chu,et al.  Parallel machine scheduling to minimize total tardiness , 2002 .

[61]  Jatinder N. D. Gupta,et al.  SCHEDULING JOBS ON PARALLEL PROCESSORS WITH DYNAMIC PROGRAMMING , 1973 .

[62]  David S. Johnson,et al.  Scheduling Equal-Length Tasks Under Treelike Precedence Constraints to Minimize Maximum Lateness , 1977, Math. Oper. Res..

[63]  Milan Vlach,et al.  Single Machine Scheduling to Minimize the Maximum Lateness with Both Specific and Generalized Due Dates , 1997 .

[64]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[65]  Kenneth R. Baker,et al.  Sequencing with due-dates and early start times to minimize maximum tardiness , 1974 .

[66]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[67]  Eugene L. Lawler,et al.  Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .

[68]  Roberto Tadei,et al.  Minimising makespan in the two-machine flow-shop with release times , 1998, J. Oper. Res. Soc..

[69]  Chelliah Sriskandarajah,et al.  On the Complexity of Generalized Due Date Scheduling Problems , 1991 .

[70]  Julius Surkis,et al.  Evaluation of a Heuristic for Scheduling Independent Jobs on Parallel Identical Processors , 1979 .

[71]  Giuseppe Lancia,et al.  Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan , 2000, Eur. J. Oper. Res..

[72]  E. Nowicki,et al.  A block approach for single-machine scheduling with release dates and due dates , 1986 .

[73]  Gur Mosheiov,et al.  Scheduling jobs under simple linear deterioration , 1994, Comput. Oper. Res..

[74]  Timothy D. Fry,et al.  A framework for single machine multiple objective sequencing research , 1989 .

[75]  Sartaj Sahni,et al.  Preemptive Scheduling of Independent Jobs with Release and Due Times on Open, Flow and Job Shops , 1981, Oper. Res..

[76]  J. Carlier The one-machine sequencing problem , 1982 .

[77]  C. N. Potts,et al.  Technical Note - Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times , 1980, Oper. Res..

[78]  R. L. Bulfin,et al.  Scheduling Open Shops with Unit Execution Times to Minimize Functions of Due Dates , 1988, Oper. Res..

[79]  Robert E. Tarjan,et al.  Scheduling Unit-Time Tasks with Arbitrary Release Times and Deadlines , 1981, SIAM J. Comput..

[80]  Yih-Long Chang,et al.  Heuristics for minimizing mean tardiness form parallel machines , 1991 .

[81]  T. C. Edwin Cheng,et al.  Parallel machine batching and scheduling with deadlines , 2000 .

[82]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[83]  Jacques Carlier,et al.  Scheduling jobs with release dates and tails on identical machines to minimize the makespan , 1987 .

[84]  David S. Johnson,et al.  Two-Processor Scheduling with Start-Times and Deadlines , 1977, SIAM J. Comput..

[85]  Sartaj Sahni,et al.  Preemptive Scheduling with Due Dates , 1979, Oper. Res..

[86]  B. J. Lageweg,et al.  Minimizing maximum lateness on one machine : Computational experience and some applications , 1976 .

[87]  David S. Johnson,et al.  Scheduling Tasks with Nonuniform Deadlines on Two Processors , 1976, J. ACM.

[88]  W. A. Horn Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear Delay Penalties , 1972 .

[89]  M. Azizoglu,et al.  Tardiness minimization on parallel machines , 1998 .

[90]  E. Nowicki,et al.  A note on minimizing maximum lateness in a one-machine sequencing problem with release dates , 1986 .

[91]  Jatinder N. D. Gupta,et al.  A review of scheduling research involving setup considerations , 1999 .

[92]  MartelCharles Preemptive Scheduling with Release Times, Deadlines, and Due Times , 1982 .

[93]  R. Bulfin,et al.  Complexity of single machine, multi-criteria scheduling problems , 1993 .

[94]  W. Townsend Minimising the Maximum Penalty in the Two-Machine Flow Shop , 1977 .

[95]  Teofilo F. Gonzalez,et al.  A New Algorithm for Preemptive Scheduling of Trees , 1980, JACM.

[96]  Eugene Levner,et al.  Fast approximation algorithm for job sequencing with deadlines , 1981, Discret. Appl. Math..

[97]  W. A. Horn Some simple scheduling algorithms , 1974 .

[98]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[99]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[100]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[101]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[102]  E. L. Lawler,et al.  A fully polynomial approximation scheme for the total tardiness problem , 1982, Oper. Res. Lett..

[103]  Philippe Baptiste,et al.  Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times , 1999 .

[104]  David B. Shmoys,et al.  Approximation schemes for constrained scheduling problems , 1989, 30th Annual Symposium on Foundations of Computer Science.

[105]  Eugene L. Lawler,et al.  On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming , 1978, JACM.

[106]  Gary D. Scudder,et al.  Sequencing with Earliness and Tardiness Penalties: A Review , 1990, Oper. Res..

[107]  Jan Karel Lenstra,et al.  Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Constraints , 1983, Oper. Res..

[108]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on a Single Machine with Precedence Constraints , 1990, INFORMS J. Comput..

[109]  Yeong-Dae Kim,et al.  A new branch and bound algorithm for minimizing mean tardiness in two-machine flowshops , 1993, Comput. Oper. Res..

[110]  Christos Koulamas Decomposition and hybrid simulated annealing heuristics for the parallel-machine total tardiness problem , 1997 .

[111]  Dorit S. Hochbaum,et al.  Scheduling with batching: minimizing the weighted number of tardy jobs , 1994, Oper. Res. Lett..

[112]  Wieslaw Kubiak,et al.  Single Machine Scheduling with Release and Due Date Assignment to Minimize the Weighted Number of Late Jobs , 1998, Inf. Process. Lett..

[113]  J. D. Irwin,et al.  An Improved Method for Scheduling Independent Tasks , 1971 .

[114]  S HochbaumDorit,et al.  Scheduling with batching , 1994 .

[115]  O. A. Yanushkevich,et al.  Single Machine Preemptive Scheduling to Minimize the Weighted Number of Late Jobs with Deadlines and Nested Release/Due Date Intervals , 2001, RAIRO Oper. Res..

[116]  E. L. Lawler,et al.  Recent Results in the Theory of Machine Scheduling , 1982, ISMP.

[117]  Mikhail Y. Kovalyov,et al.  Batch Scheduling with Deadlines on Parallel Machines: An NP-Hard Case , 1997, Inf. Process. Lett..

[118]  Eugene L. Lawler,et al.  Minimizing Maximum Lateness in a Two-Machine Open Shop , 1979, Math. Oper. Res..

[119]  T.C.E. Cheng,et al.  Single machine batch scheduling with sequential job processing , 2001 .

[120]  Christos Koulamas,et al.  The Total Tardiness Problem: Review and Extensions , 1994, Oper. Res..

[121]  Chris N. Potts,et al.  Scheduling with batching: A review , 2000, Eur. J. Oper. Res..

[122]  Jatinder N. D. Gupta,et al.  Two-machine flowshop scheduling to minimize the number of tardy jobs , 1997 .