Quantitative Imaging of Rapidly Decaying Evanescent Fields Using Plasmonic Near-Field Scanning Optical Microscopy

Non-propagating evanescent fields play an important role in the development of nano-photonic devices. While detecting the evanescent fields in far-field can be accomplished by coupling it to the propagating waves, in practice they are measured in the presence of unwanted propagating background components. It leads to a poor signal-to-noise ratio and thus to errors in quantitative analysis of the local evanescent fields. Here we report on a plasmonic near-field scanning optical microscopy (p-NSOM) technique that incorporates a nanofocusing probe for adiabatic focusing of propagating surface plasmon polaritons at the probe apex, and for enhanced coupling of evanescent waves to the far-field. In addition, a harmonic demodulation technique is employed to suppress the contribution of the background. Our experimental results show strong evidence of background free near-field imaging using the new p-NSOM technique. Furthermore, we present measurements of surface plasmon cavity modes, and quantify their contributing sources using an analytical model.

[1]  W. Kuang,et al.  Phase matching for surface plasmon enhanced second harmonic generation in a gold grating slab , 2012 .

[2]  Pascal Royer,et al.  Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy , 2003 .

[3]  C. Lienau,et al.  Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. , 2011, Nano letters.

[4]  M. Walsh,et al.  An Introduction , 2002, The Counseling Psychologist.

[5]  R. Olmon,et al.  Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. , 2012, The journal of physical chemistry letters.

[6]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[7]  Yuan Wang,et al.  Particle enhanced plasmonic NSOM , 2007, SPIE NanoScience + Engineering.

[8]  H. Furukawa,et al.  Local field enhancement with an apertureless near-field-microscope probe , 1998 .

[9]  W. Knoll,et al.  Surface-plasmon fluorescence spectroscopy , 2002 .

[10]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[11]  Ewold Verhagen,et al.  Enhanced nonlinear optical effects with a tapered plasmonic waveguide. , 2007, Nano letters.

[12]  Rainer Hillenbrand,et al.  Pseudoheterodyne detection for background-free near-field spectroscopy , 2006 .

[13]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[14]  N. Fang,et al.  Plasmonic Nanolithography , 2004 .

[15]  R. Hillenbrand,et al.  Local excitation and interference of surface phonon polaritons studied by near‐field infrared microscopy , 2008, Journal of microscopy.

[16]  A. Polman,et al.  Plasmonic nanofocusing in a dielectric wedge. , 2010, Nano letters.

[17]  F. Keilmann,et al.  Pure optical contrast in scattering‐type scanning near‐field microscopy , 2001, Journal of microscopy.

[18]  E. D. Palik Handbook of optical constants (A) , 1984 .

[19]  Nader A. Issa,et al.  Optical Nanofocusing on Tapered Metallic Waveguides , 2007 .

[20]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[21]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[22]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[23]  A plasmonic dimple lens for nanoscale focusing of light. , 2008, Nano letters.

[24]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[25]  Kh. V. Nerkararyan,et al.  Superfocusing of a surface polariton in a wedge-like structure , 1997 .

[26]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[27]  Björn Persson,et al.  Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. , 2004, Journal of the American Chemical Society.

[28]  Kenneth D. Weston,et al.  Near‐field scanning optical microscopy in reflection: A study of far‐field collection geometry effects , 1996 .

[29]  D. Bogy,et al.  Maskless Plasmonic Lithography at 22 nm Resolution , 2011, Scientific reports.

[30]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[31]  Satoshi Kawata,et al.  Near-field Raman scattering enhanced by a metallized tip , 2001 .

[32]  Y. Wang,et al.  Plasmonic nearfield scanning probe with high transmission. , 2008, Nano letters.

[33]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[34]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[35]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[36]  Wolfgang Knoll,et al.  Surface-Plasmon Field-Enhanced Fluorescence Spectroscopy , 2000 .

[37]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[38]  Dmitri Petrov,et al.  Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering , 2010 .

[39]  Y. Martin,et al.  Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution , 1995, Science.

[40]  X. Xie,et al.  Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy , 2002 .

[41]  J. R. Sambles,et al.  Optical excitation of surface plasmons: An introduction , 1991 .

[42]  R. Hillenbrand,et al.  Near-field imaging of mid-infrared surface phonon polariton propagation , 2005 .

[43]  Q. Luo,et al.  Subwavelength nanolithography using surface plasmons , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[44]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[45]  Novotny,et al.  Local Excitation, Scattering, and Interference of Surface Plasmons. , 1996, Physical review letters.

[46]  Cheng Sun,et al.  Ultrasonic near-field optical microscopy using a plasmonic nanofocusing probe , 2013 .

[47]  Changtao Wang,et al.  Plasmonic interference nanolithography with a double-layer planar silver lens structure. , 2009, Optics express.

[48]  F. Keilmann,et al.  Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy , 2002 .

[49]  T. Saiki,et al.  Near‐field fluorescence imaging of single molecules with a resolution in the range of 10 nm , 2001, Journal of microscopy.

[50]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[51]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[52]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[53]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[54]  A. Bouhelier,et al.  Plasmon‐coupled tip‐enhanced near‐field optical microscopy , 2003, Journal of microscopy.

[55]  Mark I. Stockman,et al.  Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods , 2008 .

[56]  Pierre-Michel Adam,et al.  Role of surface plasmon in second harmonic generation from gold nanorods , 2007 .