Properties of the Nili Fossae Olivine-phyllosilicate-carbonate lithology: orbital and in situ at Sé́ıtah

We have studied the observed properties of the Nili Fossae olivine-phyllosilicate-carbonate lithology from orbital data and in situ by the Mars 2020 rover at the Sé́ıtah unit in Jezero crater, including: 1) composition 2) grain size 3) inferred viscosity (calculated based on geochemistry collected by SuperCam (Wiens et al., 2022)). Based on the low viscosity and distribution of the unit we postulate a flood lava origin for the olivine-phyllosilicate-carbonate at Sé́ıtah. We include a new CRISM map of the phyllosilicate 2.38 μm band and use in situ data from Mars 2020 SuperCam Laser Induced Breakdown Spectroscopy (LIBS) and VISIR and MastCam-Z observations to show that the phyllosilicate in the olivine cumulate in the Sé́ıtah formation is either talc, serpentine, hectorite, Fe/Mg smectite, saponite or stevensite. We discuss two intertwining aspects of the history of the lithology: 1) the emplacement and properties of the cumulate layer within a lava lake, based on terrestrial analogs in the Pilbara, Western Australia, and using previously published models of flood lavas and lava lakes, and 2) the limited extent of post emplacement alteration, including phyllosilicate and carbonate

[1]  M. Golombek,et al.  In Situ Geologic Context Mapping Transect on the Floor of Jezero Crater from Mars 2020 Perseverance Rover Observations , 2023, Journal of Geophysical Research: Planets.

[2]  O. Forni,et al.  Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover , 2023, Journal of Geophysical Research: Planets.

[3]  Linda C. Kah,et al.  SHERLOC Raman Mineral Class Detections of the Mars 2020 Crater Floor Campaign , 2023, Journal of Geophysical Research: Planets.

[4]  O. Forni,et al.  Carbonate Detection With SuperCam in Igneous Rocks on the Floor of Jezero Crater, Mars , 2022, Journal of Geophysical Research: Planets.

[5]  O. Forni,et al.  Reflectance of Jezero Crater Floor: 2. Mineralogical Interpretation , 2022, Journal of Geophysical Research: Planets.

[6]  O. Forni,et al.  A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars , 2022, Journal of Geophysical Research: Planets.

[7]  W. T. Elam,et al.  An olivine cumulate outcrop on the floor of Jezero crater, Mars , 2022, Science.

[8]  Linda C. Kah,et al.  Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars , 2022, Science.

[9]  M. Mellon,et al.  Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars , 2022, Science advances.

[10]  V. Hamilton,et al.  Olivine and carbonate-rich bedrock in Gusev crater and the Nili Fossae region of Mars may be altered ignimbrite deposits , 2022, Icarus.

[11]  F. Rivera‐Hernández,et al.  Constraints on the uncertainty, timing, and magnitude of potential Mars oceans from topographic deformation models , 2022, Icarus.

[12]  D. Loizeau,et al.  ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration , 2021, Earth and space science.

[13]  E. Cloutis,et al.  Characteristics, Origins, and Biosignature Preservation Potential of Carbonate‐Bearing Rocks Within and Outside of Jezero Crater , 2021, Journal of geophysical research. Planets.

[14]  Linda C. Kah,et al.  Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars , 2021, Science.

[15]  J. Bishop,et al.  Early Archean alteration minerals in mafic-ultramafic rocks of the Barberton greenstone belt as petrological analogs for clay mineralogy on Mars , 2021 .

[16]  T. Glotch,et al.  Distinct Carbonate Lithologies in Jezero Crater, Mars , 2021, Geophysical research letters.

[17]  A. Doressoundiram,et al.  The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.

[18]  J. García-Rivas,et al.  On the structural formula of smectites: a review and new data on the influence of exchangeable cations , 2021, Journal of applied crystallography.

[19]  Arun M. Saranathan,et al.  Adversarial feature learning for improved mineral mapping of CRISM data , 2021, Icarus.

[20]  M. Parente,et al.  A new method for atmospheric correction and de-noising of CRISM hyperspectral data , 2021 .

[21]  Justin M. McGlown,et al.  The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.

[22]  R. Wiens,et al.  Mars 2020 Mission Overview , 2020, Space Science Reviews.

[23]  Linda C. Kah,et al.  Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team , 2020, Space Science Reviews.

[24]  D. Montgomery,et al.  Where are Mars’ Hypothesized Ocean Shorelines? Large Lateral and Topographic Offsets Between Different Versions of Paleoshoreline Maps , 2020, Journal of Geophysical Research: Planets.

[25]  M. Rice,et al.  The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars , 2020, Icarus.

[26]  N. Mangold,et al.  Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars , 2020 .

[27]  J. Mustard,et al.  A widespread olivine-rich ash deposit on Mars , 2019, Geology.

[28]  C. Viviano,et al.  Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.

[29]  K. Kinch,et al.  Crater Statistics on the Dark‐Toned, Mafic Floor Unit in Jezero Crater, Mars , 2019, Geophysical Research Letters.

[30]  M. Manga,et al.  Timing of oceans on Mars from shoreline deformation , 2018, Nature.

[31]  M. Golombek,et al.  Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas , 2018, Geophysical research letters.

[32]  C. Fassett,et al.  Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars , 2018 .

[33]  D. Ming,et al.  A Two‐Step K‐Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters , 2017 .

[34]  K. Putirka Special Collection: Olivine: Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature , 2016 .

[35]  F. McCubbin,et al.  Rb‐Sr and Sm‐Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 , 2016 .

[36]  T. Roush,et al.  Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra , 2015 .

[37]  John F. Mustard,et al.  Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .

[38]  R. Morris,et al.  Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater , 2014 .

[39]  M. Darby Dyar,et al.  Coordinated spectral and XRD analyses of magnesite‐nontronite‐forsterite mixtures and implications for carbonates on Mars , 2013 .

[40]  L. Jozwiak,et al.  The volcanic history of Olympus Mons from paleo-topography and flexural modeling , 2013 .

[41]  M. Rampey,et al.  Mars Hesperian Magmatism as Revealed by Syrtis Major and the Circum-Hellas Volcanic Province , 2012 .

[42]  B. Hynek,et al.  The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes , 2011 .

[43]  G. Neukum,et al.  Mineralogy of recent volcanic plains in the Tharsis region, Mars, and implications for platy-ridged flow composition. , 2010 .

[44]  J. Grimwood,et al.  A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars , 2010, Science.

[45]  J. Vaucher,et al.  The morphologies of volcanic landforms at Central Elysium Planitia: Evidence for recent and fluid lavas on Mars , 2009 .

[46]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[47]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[48]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[49]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[50]  M. D. Dyar,et al.  Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.

[51]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[52]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[53]  A. Brown Spectral curve fitting for automatic hyperspectral data analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[54]  A. Treiman The nakhlite meteorites: Augite-rich igneous rocks from Mars , 2005 .

[55]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[56]  Thomas Cudahy,et al.  Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia , 2005, 1401.5201.

[57]  N. Arndt,et al.  Intrusion and Crystallization of a Spinifex-Textured Komatiite Sill in Dundonald Township, Ontario , 2004 .

[58]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[59]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.

[60]  M. V. Kranendonk,et al.  Geology and Tectonic Evolution of the Archean North Pilbara Terrain,Pilbara Craton, Western Australia , 2002 .

[61]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[62]  J. Head,et al.  Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. , 1994 .

[63]  E. Duke,et al.  Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing , 1994 .

[64]  Lionel Wilson,et al.  Factors controlling the lengths of channel-fed lava flows , 1994 .

[65]  H. Huppert,et al.  The crystallization of lava lakes , 1993 .

[66]  J. Plescia Recent flood lavas in the Elysium region of Mars , 1990 .

[67]  P. Pinet,et al.  Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth‐based near‐infrared telescopic charge‐coupled device imaging , 1990 .

[68]  P. Schultz,et al.  Sequence and mechanisms of deformation around the Hellas and Isidis Impact Basins on Mars , 1989 .

[69]  C. Kilburn,et al.  The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily , 1987 .

[70]  H. Huppert,et al.  Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust , 1985 .

[71]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[72]  H. Huppert,et al.  The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma , 1981 .

[73]  D. Bish,et al.  The nature of kerolite, its relation to talc and stevensite , 1977, Mineralogical Magazine.

[74]  R. Sparks,et al.  The transport of xenoliths in magmas , 1977 .

[75]  Y. Bottinga,et al.  The viscosity of magmatic silicate liquids; a model calculation , 1972 .

[76]  J. Rice,et al.  THE POTENTIAL FOR PYROCLASTIC DEPOSITS IN THE JEZERO CRATER REGION OF MARS FROM ASH DISPERSAL MODELING. , 2022 .

[77]  Luther W. Beegle,et al.  The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life , 2018 .

[78]  B. Hargraves ASPECTS OF MAGMA TRANSPORT , 2012 .

[79]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[80]  S. W. Bailey Hydrous phyllosilicates (exclusive of micas) , 1988 .