Cyclic Evaluation of Transitivity of Reciprocal Relations

A general framework for studying the transitivity of reciprocal relations is presented. The key feature is the cyclic evaluation of transitivity: triangles (i.e. any three points) are visited in a cyclic manner. An upper bound function acting upon the ordered weights encountered provides an upper bound for the ‘sum minus 1’ of these weights. Commutative quasi-copulas allow to translate a general definition of fuzzy transitivity (when applied to reciprocal relations) elegantly into the framework of cycle-transitivity. Similarly, a general notion of stochastic transitivity corresponds to a particular class of upper bound functions. Ample attention is given to self-dual upper bound functions.

[1]  Somdeb Lahiri,et al.  Axiomatic characterizations of threshold choice functions for comparison functions , 2002, Fuzzy Sets Syst..

[2]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[3]  Zbigniew Switalski,et al.  Transitivity of fuzzy preference relations - an empirical study , 2001, Fuzzy Sets Syst..

[4]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[5]  P. Vincke,et al.  Biorder families, valued relations and preference modelling , 1986 .

[6]  Ulrich Bodenhofer,et al.  Representations and constructions of similarity-based fuzzy orderings , 2003, Fuzzy Sets Syst..

[7]  Tetsuzo Tanino,et al.  Fuzzy Preference Relations in Group Decision Making , 1988 .

[8]  C. J. Hearne Non-conventional Preference Relations in Decision Making , 1989 .

[9]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[10]  R. Deb,et al.  Fuzzy choice functions , 1991 .

[11]  Bhaskar Dutta,et al.  Comparison functions and choice correspondences , 1999 .

[12]  J. Kacprzyk,et al.  Group decision making and consensus under fuzzy preferences and fuzzy majority , 1992 .

[13]  J. García-Lapresta,et al.  Majority decisions based on difference of votes , 2001 .

[14]  Francisco Herrera,et al.  Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations , 1998, Fuzzy Sets Syst..

[15]  Christian Genest,et al.  A Characterization of Quasi-copulas , 1999 .

[16]  Claudi Alsina,et al.  On the characterization of a class of binary operations on distribution functions , 1993 .

[17]  I. Georgescu Fuzzy choice functions , 2007 .

[18]  B. Baets,et al.  Twenty years of fuzzy preference structures (1978–1997) , 1997 .

[19]  P. Fishburn Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .

[20]  Radko Mesiar,et al.  Domination of Aggregation Operators and Preservation of Transitivity , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[22]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[23]  Fred S. Roberts,et al.  Homogeneous families of semiorders and the theory of probabilistic consistency , 1971 .

[24]  Bernard Monjardet,et al.  A Generalisation of Probabilistic Consistency: Linearity Conditions for Valued Preference Relations , 1988 .

[25]  H. A. David,et al.  The method of paired comparisons , 1966 .

[26]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[27]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[28]  K. Basu Fuzzy revealed preference theory , 1984 .

[29]  Bernard De Baets,et al.  Fuzzy preference structures without incomparability , 1995, Fuzzy Sets Syst..

[30]  Richard A. Brualdi,et al.  Generalized transitive tournaments and doubly stochastic matrices , 1992 .