Antibunching photons in a cavity coupled to an optomechanical system

We study the photon statistics of a cavity linearly coupled to an optomechanical system via second-order correlation functions. Our calculations show that the cavity can exhibit strong photon antibunching even when optomechanical interaction in the optomechanical system is weak. The cooperation between the weak optomechanical interaction and the destructive interference between different paths for two-photon excitation leads to the efficient antibunching effect. Compared with the standard optomechanical system, the coupling between a cavity and an optomechanical system provides a method to relax the constraints to obtain a single photon by optomechanical interaction.

[1]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[2]  V. Savona,et al.  Single photons from coupled quantum modes. , 2010, Physical review letters.

[3]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[4]  G. W. Ford,et al.  Statistical Mechanics of Assemblies of Coupled Oscillators , 1965 .

[5]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[6]  Franco Nori,et al.  Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system , 2008, 0805.4102.

[7]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[8]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[9]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[10]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[11]  Kaufman,et al.  Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. , 1987, Physical review. A, General physics.

[12]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[13]  G. S. Agarwal,et al.  Optomechanical systems as single-photon routers , 2011, 1109.4361.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  W. Marsden I and J , 2012 .

[16]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[17]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[18]  P. Zoller,et al.  Optomechanical quantum information processing with photons and phonons. , 2012, Physical review letters.

[19]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[20]  T. Kippenberg,et al.  Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit , 2009 .

[21]  Hailin Wang,et al.  Resolved-sideband and cryogenic cooling of an optomechanical resonator , 2009 .

[22]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[23]  O. Painter,et al.  Enhanced quantum nonlinearities in a two-mode optomechanical system. , 2012, Physical review letters.

[24]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[25]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[26]  Michael R. Vanner,et al.  Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity , 2009, 0901.1801.

[27]  Cristiano Ciuti,et al.  25pRB-4 On the origin of strong photon antibunching in weakly nonlinear photonic molecules , 2010, 1007.1605.

[28]  J. Teufel,et al.  Dynamical backaction of microwave fields on a nanomechanical oscillator. , 2008, Physical review letters.

[29]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[30]  A. A. Abdumalikov,et al.  Observation of resonant photon blockade at microwave frequencies using correlation function measurements. , 2011, Physical review letters.

[31]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[32]  Mancini,et al.  Quantum noise reduction by radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[34]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[35]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[36]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[37]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[38]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[39]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[40]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[41]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[42]  D. Walls,et al.  Quantum theory of optical bistability. I. Nonlinear polarisability model , 1980 .

[43]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[44]  A. Houck,et al.  Dispersive photon blockade in a superconducting circuit. , 2010, Physical review letters.

[45]  A. Majumdar,et al.  Loss-enabled sub-poissonian light generation in a bimodal nanocavity. , 2011, Physical review letters.

[46]  H. Carmichael An open systems approach to quantum optics , 1993 .

[47]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[48]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[49]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.