Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity

This paper studies the convergence of the classical proximal point algorithm without assuming monotonicity of the underlying mapping. Practical conditions are given that guarantee the local convergence of the iterates to a solution ofT( x) ? 0, whereT is an arbitrary set-valued mapping from a Hilbert space to itself. In particular, when the problem is "nonsingular" in the sense thatT-1 has a Lipschitz localization around one of the solutions, local linear convergence is obtained. This kind of regularity property of variational inclusions has been extensively studied in the literature under the name ofstrong regularity, and it can be viewed as a natural generalization of classical constraint qualifications in nonlinear programming to more general problem classes. Combining the new convergence results with an abstract duality framework for variational inclusions, the author proves the local convergence of multiplier methods for a very general class of problems. This gives as special cases new convergence results for multiplier methods for nonmonotone variational inequalities and nonconvex nonlinear programming.

[1]  Alexander Kaplan,et al.  Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..

[2]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[3]  R. Tyrrell Rockafellar,et al.  Ample Parameterization of Variational Inclusions , 2001, SIAM J. Optim..

[4]  Stephen M. Robinson,et al.  Linear convergence of epsilon-subgradient descent methods for a class of convex functions , 1999, Math. Program..

[5]  Nicholas I. M. Gould,et al.  Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints , 1996, SIAM J. Optim..

[6]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[7]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[8]  D. Klatte,et al.  Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimization , 1991 .

[9]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[10]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[11]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[12]  S. M. Robinson Newton's method for a class of nonsmooth functions , 1994 .

[13]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[14]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[15]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[16]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[17]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[18]  R. Rockafellar MONOTONE OPERATORS AND AUGMENTED LAGRANGIAN METHODS IN NONLINEAR PROGRAMMING , 1978 .

[19]  Adam B. Levy,et al.  Stability of Locally Optimal Solutions , 1999, SIAM J. Optim..

[20]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[21]  Kazufumi Ito,et al.  The augmented lagrangian method for equality and inequality constraints in hilbert spaces , 1990, Math. Program..

[22]  Patricia Tossings The perturbed proximal point algorithm and some of its applications , 1994 .

[23]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[24]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[25]  L. Contesse-Becker Extended convergence results for the method of multipliers for nonstrictly binding inequality constraints , 1993 .

[26]  Teemu Pennanen,et al.  Dualization of Generalized Equations of Maximal Monotone Type , 1999, SIAM J. Optim..

[27]  Michael C. Ferris,et al.  Smooth methods of multipliers for complementarity problems , 1999, Math. Program..

[28]  J. Spingarn Submonotone mappings and the proximal point algorithm , 1982 .

[29]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[30]  Diethard Klatte,et al.  Strong stability in nonlinear programming revisited , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[31]  F. Luque Asymptotic convergence analysis of the proximal point algorithm , 1984 .

[32]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[33]  Marc Teboulle,et al.  Lagrangian Duality and Related Multiplier Methods for Variational Inequality Problems , 1999, SIAM J. Optim..

[34]  J. Lawrence,et al.  On Fixed Points of Non-Expansive Piecewise Isometric Mappings , 1987 .

[35]  Stephen M. Robinson,et al.  Composition duality and maximal monotonicity , 1999, Math. Program..

[36]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .